期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
1
作者 张丽萍 孙宗耀 +1 位作者 李佳妮 苏俊燕 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期683-689,共7页
The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas w... The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions. 展开更多
关键词 graphene field-effect transistors external magnetic field radiation frequency instability increment
原文传递
Flexible Graphene Field‑Effect Transistors and Their Application in Flexible Biomedical Sensing
2
作者 Mingyuan Sun Shuai Wang +5 位作者 Yanbo Liang Chao Wang Yunhong Zhang Hong Liu Yu Zhang Lin Han 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期252-313,共62页
Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabricati... Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing. 展开更多
关键词 FLEXIBLE graphene field-effect transistor Wearable IMPLANTABLE BIOSENSOR
下载PDF
A review for compact model of graphene field-effect transistors 被引量:1
3
作者 卢年端 汪令飞 +1 位作者 李泠 刘明 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期96-113,共18页
Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as a... Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as an option for conventional silicon devices. As a critical step in the design cycle of modem IC products, compact model refers to the development of models for integrated semiconductor devices for use in circuit simulations. The purpose of this review is to provide a theoretical description of current compact model of graphene field-effect transistors. Special attention is devoted to the charge sheet model, drift-diffusion model, Boltzmann equation, density of states (DOS), and surface-potential-based compact model. Finally, an outlook of this field is briefly discussed. 展开更多
关键词 two-dimensional material graphene field-effect transistor compact model
原文传递
Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates
4
作者 何泽召 杨克武 +6 位作者 蔚翠 刘庆彬 王晶晶 宋旭波 韩婷婷 冯志红 蔡树军 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第8期100-104,共5页
Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features. We report on monolayer and bilayer epitaxial graphene field-effect tran... Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features. We report on monolayer and bilayer epitaxial graphene field-effect transistors (GFETs) fabricated on SiC substrates. Compared with monolayer GFETs, the bilayer GFETs exhibit a significant improvement in dc characteristics, including increasing current density I DS, improved transconductance g m, reduced sheet resistance lion, and current saturation. The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs. Furthermore, the improved dc characteristics enhance a better rf performance for bilayer graphene devices, demonstrating that the quasifree-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics. 展开更多
关键词 of in is for SIC Comparative Study of Monolayer and Bilayer Epitaxial graphene field-effect transistors on SiC Substrates on
原文传递
High temperature characteristics of bilayer epitaxial graphene field-effect transistors on SiC Substrate
5
作者 何泽召 杨克武 +6 位作者 蔚翠 刘庆彬 王晶晶 李佳 芦伟立 冯志红 蔡树军 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期463-467,共5页
In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point... In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point),the drainsource current decreases obviously with increasing temperature,but it has little change at a gate bias of +8 V(near Dirac point).The competing interactions between scattering and thermal activation are responsible for the different reduction tendencies.Four different kinds of scatterings are taken into account to qualitatively analyze the carrier mobility under different temperatures.The devices exhibit almost unchanged DC performances after high temperature measurements at 200℃ for 5 hours in air ambience,demonstrating the high thermal stabilities of the bilayer epitaxial graphene devices. 展开更多
关键词 epitaxial graphene field-effect transistor high temperature characteristics
原文传递
Field-effect transistors based on two-dimensional materials for logic applications 被引量:3
6
作者 王欣然 施毅 张荣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期147-161,共15页
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and requi... Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors. 展开更多
关键词 graphene MOS2 two-dimensional (2D) materials field-effect transistors
原文传递
Reversible chemical switches of functionalized nitrogen-doped graphene field-effect transistors 被引量:2
7
作者 Rong Rong Song Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第2期565-569,共5页
Nitrogen doping is a promising way to modulate the electrical properties of graphene to realize graphene-based electronics and promise fascinating properties and applications.Herein,we report a method to noncovalently... Nitrogen doping is a promising way to modulate the electrical properties of graphene to realize graphene-based electronics and promise fascinating properties and applications.Herein,we report a method to noncovalently assembly titanium(Ⅳ) bis(ammoniumlactato) dihydroxide(Ti complex) on nitrogen-doped graphene to create a reliable hybrids which can be used as a reversible chemical induced switching.As the adsorption and desorption of Ti complex in sequential treatments,the conductance of the nitrogen-doped graphene transistors was finely modulated.Control experiments with pristine graphene clearly demonstrated the important effort of the nitrogen in this chemical sensor.Under optimized conditions,nitrogen-doped graphene transistors open up new ways to develop multifunctional devices with high sensitivity. 展开更多
关键词 field-effect transistors NITROGEN-DOPED graphene Doping effect Ti complex REVERSIBLE switch
原文传递
Top-gated graphene field-effect transistors on SiC substrates
8
作者 MA Peng JIN Zhi +6 位作者 GUO JianNan PAN HongLiang LIU XinYu YE TianChun JIA YuPing GUO LiWei CHEN XiaoLong 《Chinese Science Bulletin》 SCIE CAS 2012年第19期2401-2404,共4页
We report on a demonstration of top-gated graphene field-effect transistors(FETs) fabricated on epitaxial SiC substrate.Composite stacks,benzocyclobutene and atomic layer deposition Al2O3,are used as the gate dielectr... We report on a demonstration of top-gated graphene field-effect transistors(FETs) fabricated on epitaxial SiC substrate.Composite stacks,benzocyclobutene and atomic layer deposition Al2O3,are used as the gate dielectrics to maintain intrinsic carrier mobility of graphene.All graphene FETs exhibit n-type transistor characteristics and the drain current is nearly linear dependence on gate and drain voltages.Despite a low field-effect mobility of 40 cm2/(V s),a maximum cutoff frequency of 4.6 GHz and a maximum oscillation frequency of 1.5 GHz were obtained for the graphene devices with a gate length of 1 μm. 展开更多
关键词 graphene radio frequency(RF) field-effect transistor(FET) SiC
下载PDF
Impact of device resistances in the performance of graphene‑based terahertz photodetectors
9
作者 O.Castelló Sofía M.López Baptista +6 位作者 K.Watanabe T.Taniguchi E.Diez J.E.Velázquez-Pérez Y.M.Meziani J.M.Caridad J.A.Delgado-Notario 《Frontiers of Optoelectronics》 EI CSCD 2024年第2期87-97,共11页
In recent years,graphene field-effect-transistors(GFETs)have demonstrated an outstanding potential for terahertz(THz)photodetection due to their fast response and high-sensitivity.Such features are essential to enable... In recent years,graphene field-effect-transistors(GFETs)have demonstrated an outstanding potential for terahertz(THz)photodetection due to their fast response and high-sensitivity.Such features are essential to enable emerging THz applications,including 6G wireless communications,quantum information,bioimaging and security.However,the overall performance of these photodetectors may be utterly compromised by the impact of internal resistances presented in the device,so-called access or parasitic resistances.In this work,we provide a detailed study of the influence of internal device resistances in the photoresponse of high-mobility dual-gate GFET detectors.Such dual-gate architectures allow us to fine tune(decrease)the internal resistance of the device by an order of magnitude and consequently demonstrate an improved responsivity and noise-equivalent-power values of the photodetector,respectively.Our results can be well understood by a series resistance model,as shown by the excellent agreement found between the experimental data and theoretical calculations.These findings are therefore relevant to understand and improve the overall performance of existing high-mobility graphene photodetectors. 展开更多
关键词 graphene THz PHOTODETECTOR field-effect transistor PLASMONIC
原文传递
腐蚀溶液对石墨烯转移质量和GFET性能的影响
10
作者 蒋月 彭冬生 +2 位作者 陈祖军 张茂贤 彭争春 《半导体技术》 CAS CSCD 北大核心 2018年第4期305-309,320,共6页
对比分析了过硫酸铵(APS)与三氯化铁(FeCl3)两种腐蚀溶液对转移后石墨烯质量的影响。结果表明,采用FeCl3腐蚀溶液转移后的石墨烯表面会引入Fe和Cl离子,而APS腐蚀溶液转移后的石墨烯表面基本未引入杂质。将两种转移到Si O2/Si基底上... 对比分析了过硫酸铵(APS)与三氯化铁(FeCl3)两种腐蚀溶液对转移后石墨烯质量的影响。结果表明,采用FeCl3腐蚀溶液转移后的石墨烯表面会引入Fe和Cl离子,而APS腐蚀溶液转移后的石墨烯表面基本未引入杂质。将两种转移到Si O2/Si基底上的石墨烯样品蒸镀100 nm厚的金的源漏电极后分别制成了石墨烯场效应晶体管(GFET),并在室温下对其进行了电学性能测试。测试结果表明,相对于FeCl3腐蚀溶液转移的石墨烯样品制成的器件,采用APS腐蚀溶液转移的石墨烯样品制成器件的狄拉克点从75 V左右降低到了0 V左右,载流子迁移率从823 cm^2/(V·s)提升到了1 324 cm^2/(V·s)。因此,采用APS腐蚀溶液转移石墨烯引入杂质更少,制备的器件性能更优越。 展开更多
关键词 石墨烯 腐蚀溶液 石墨烯场效应晶体管(gfet) 电学性能 狄拉克点
原文传递
Highly Sensitive Protein Sensor Based on Thermally-Reduced Graphene Oxide Field-Effect Transistor 被引量:6
11
作者 Shun Mao Kehan Yu Ganhua Lu Junhong Chen 《Nano Research》 SCIE EI CAS CSCD 2011年第10期921-930,共10页
We report the fabrication of a highly sensitive field-effect transistor (FET) biosensor using thermally-reduced graphene oxide (TRGO) sheets functionalized with gold nanoparticle (NP)-antibody conjugates. Probe ... We report the fabrication of a highly sensitive field-effect transistor (FET) biosensor using thermally-reduced graphene oxide (TRGO) sheets functionalized with gold nanoparticle (NP)-antibody conjugates. Probe antibody was labeled on the surface of TRGO sheets through Au NPs and electrical detection of protein binding (Immunoglobulin G/IgG and anti-lmmunoglobulin G/anti-lgG) was accomplished by FET and direct current (dc) measurements. The protein binding events induced significant changes in the resistance of the TRGO sheet, which is referred to as the sensor response. The dependence of the sensor response on the TRGO base resistance in the sensor and the antibody areal density on the TRGO sheet was systematically studied, from which a correlation of the sensor response with sensor parameters was found: the sensor response was more significant with larger TRGO base resistance and higher antibody areal density. The detection limit of the novel biosensor was around the 0.2 ng/rnL level, which is among the best of,'eported carbon nanomaterial-based protein sensors and can be further optimized by tuning the sensor structure. 展开更多
关键词 BIOSENSOR thermally-reduced graphene oxide field-effect transistor protein detection
原文传递
Realization of low contact resistance close to theoretical limit in graphene transistors 被引量:5
12
作者 Hua Zhong Zhiyong Zhang Bingyan Chen Haitao Xu Dangming Yu Le Huang Lianmao Peng 《Nano Research》 SCIE EI CAS CSCD 2015年第5期1669-1679,共11页
Realizing low contact resistance between graphene and metal electrodes remains a well-known challenge for building high-performance graphene devices. In this work, we attempt to reduce the contact resistance in graphe... Realizing low contact resistance between graphene and metal electrodes remains a well-known challenge for building high-performance graphene devices. In this work, we attempt to reduce the contact resistance in graphene transistors and further explore the resistance limit between graphene and metal contacts. The Pd/graphene contact resistance at room temperature is reduced below the 100 Ω·μm level both on mechanically exfoliated and chemical-vapor-deposition graphene by adopting high-purity palladium and high-quality graphene and controlling the fabrication process to not contaminate the interface. After excluding the parasitic series resistances from the measurement system and electrodes, the retrieved contact resistance is shown to be systematically and statistically less than 100 Ω·μm, with a minimum value of 69 Ω·μm, which is very close to the theoretical limit. Furthermore, the contact resistance shows no clear dependence on temperature in the range of 77-300 K; this is attributed to the saturation of carrier injection efficiency between graphene and Pd owing to the high quality of the graphene samples used, which have a sufficiently long carrier mean-free-path. 展开更多
关键词 graphene field-effect transistors contact resistance metal-graphene interface transfer length method
原文传递
Patterning graphene nanostripes in substrate-supported functionaUzed graphene: A promising route to integrated, robust, and superior transistors 被引量:3
13
作者 Liang-fengHuang ZhiZeng 《Frontiers of physics》 SCIE CSCD 2012年第3期324-327,共4页
It is promising to apply quantum-mechanically confined graphene systems in field-effect transistors. High stability, superior performance, and large-scale integration are the main challenges facing the practical appli... It is promising to apply quantum-mechanically confined graphene systems in field-effect transistors. High stability, superior performance, and large-scale integration are the main challenges facing the practical application of graphene transistors. Our understandings of the adatom-graphene interac- tion combined with recent progress in the nanofabrication technology indicate that very stable and high-quality graphene nanostripes could be integrated in substrate-supported functionalized (hydro- genated or fluorinated) graphene using electron-beam lithography. We also propose that parallelizing a couple of graphene nanostripes in a transistor should be preferred for practical application, which is also very useful for transistors based on graphene nanoribbon. 展开更多
关键词 graphene nanostripe functionalized graphene field-effect transistor
原文传递
Computational Model of Edge Effects in Graphene Nanoribbon Transistors 被引量:1
14
作者 Pei Zhao Mihir Choudhury +1 位作者 Kartik Mohanram Jing Guo 《Nano Research》 SCIE EI CSCD 2008年第5期395-402,共8页
We present a semi-analytical model incorporating the effects of edge bond relaxation,the third nearest neighbor interactions,and edge scattering in graphene nanoribbon fi eld-effect transistors(GNRFETs)with armchair-e... We present a semi-analytical model incorporating the effects of edge bond relaxation,the third nearest neighbor interactions,and edge scattering in graphene nanoribbon fi eld-effect transistors(GNRFETs)with armchair-edge GNR(AGNR)channels.Unlike carbon nanotubes(CNTs)which do not have edges,the existence of edges in the AGNRs has a signifi cant effect on the quantum capacitance and ballistic I V characteristics of GNRFETs.For an AGNR with an index of m=3p,the band gap decreases and the ON current increases whereas for an AGNR with an index of m=3p+1,the quantum capacitance increases and the ON current decreases.The effect of edge scattering,which reduces the ON current,is also included in the model. 展开更多
关键词 graphene nanoribbon field-effect transistor edge bond relaxation third nearest neighbor interaction edge scattering
原文传递
Insight into the underlying competitive mechanism for the shift of the charge neutrality point in a trilayer-graphene field-effect transistor 被引量:2
15
作者 Tao Huang Jiafen Ding +9 位作者 Zirui Liu Rui Zhang BoLei Zhang Kai Xiong Longzhou Zhang Chong Wang Shili Shen Cuiyu Li Peng Yang Feng Qiu 《eScience》 2022年第3期319-328,共10页
Layer-number modulation in graphene has become a recent focus of research due to the superior degree of freedom that can be achieved in terms of magic-angle,wettability,superconductivity,and superlattices.However,the ... Layer-number modulation in graphene has become a recent focus of research due to the superior degree of freedom that can be achieved in terms of magic-angle,wettability,superconductivity,and superlattices.However,the intrinsic transport of multilayer graphene is indistinguishable in atmospheric adsorbates and supporting environment,and its underlying charge transfer mechanism has not yet been thoroughly determined.In this study,a shift in the charge neutrality point of trilayer graphene(TLG)is demonstrated to be regulated by three governing factors:oxygen gas(O_(2)),water molecules(H_(2)O),and thermally activated electrons.Absorbed O_(2) induces a high work function in semimetallic TLG,while H_(2)O is not an evident dopant but can strengthen binding against O_(2) desorption.A simplified model is developed to elucidate the competitive mechanism and charge transfer among these two dopants(O_(2),H_(2)O)and thermal electrons,and the model is demonstrated by work function regulation and Bader charge transfer based on density functional theory calculations.This study provides a strategy to explore transport modulation of multilayer graphene in the fields of ballistic transport and low power consumption of graphene field-effect transistors. 展开更多
关键词 Trilayer graphene field-effect transistors Charge neutrality point Work function Charge transfer DFT calculations
原文传递
Rationally designed graphene channels for real-time sodium ion detection for electronic tongue
16
作者 Chung Won Lee Sang Eon Jun +8 位作者 Seung Ju Kim Tae Hyung Lee Sol A.Lee Jin Wook Yang Jin Hyuk Cho Shinyoung Choi Cheol-joo Kim Soo Young Kim Ho Won Jang 《InfoMat》 SCIE CSCD 2023年第7期43-58,共16页
Monitoring taste-inducing ions and molecules continuously in liquids or solutions is of great considerable matter for the realization of the electronic tongue(E-tongue).Particularly from the five major tastes,the high... Monitoring taste-inducing ions and molecules continuously in liquids or solutions is of great considerable matter for the realization of the electronic tongue(E-tongue).Particularly from the five major tastes,the highly selective,sensitive detection of Na^(+)in real-time is prioritized.Prioritization is due to the saltiness of food is the key ingredient in most meals.Nevertheless,existing Na^(+)detecting devices have relatively low performances of selectivity,sensitivity,and lack of on–off functions.Additionally,conventional devices significantly deteriorate in capac-ity due to repetitive usage or lifetime shortage by degradation of the sensing mate-rial.Herein,a graphene-based channel was rationally designed by the facile decoration of Calix[4]arene and Nafion to address this issue.They act as a receptor and a molecular sieve,respectively,to enhance selectivity and sensitivity and elon-gate the life expectancy of the device.This device was merged with a microfluidic channel to control the injection and withdrawal of solutions to fulfill dynamic on–off functions.The fabricated device has highly selective,sensitive Na^(+)detection properties compared to other 10 molecule/ionic species.Dynamic on–off functions of the device were available,also possesses a long lifespan of at least 220 days.Additionally,it can precisely discriminate real beverages containing Na^(+),which can be observed by principal component analysis plot.These features offer the possibility of ascending to a platform for E-tongues in near future. 展开更多
关键词 electronic tongue graphene microfluidic channels Na^(+)sensors solution-gated field-effect transistors
原文传递
Projected Performance Advantage of Multilayer Graphene Nanoribbons as a Transistor Channel Material 被引量:1
17
作者 Yijian Ouyang Hongjie Dai Jing Guo 《Nano Research》 SCIE EI CSCD 2010年第1期8-15,共8页
The performance limits of a multilayer graphene nanoribbon(GNR)field-effect transistor(FET)are assessed and compared with those of a monolayer GNRFET and a carbon nanotube(CNT)FET.The results show that with a thin hig... The performance limits of a multilayer graphene nanoribbon(GNR)field-effect transistor(FET)are assessed and compared with those of a monolayer GNRFET and a carbon nanotube(CNT)FET.The results show that with a thin high dielectric constant(high-κ)gate insulator and reduced interlayer coupling,a multilayer GNRFET can significantly outperform its CNT counterpart with a similar gate and bandgap in terms of the ballistic on-current.In the presence of optical phonon scattering,which has a short mean free path in the graphene-derived nanostructures,the advantage of the multilayer GNRFET is even more significant.Simulation results indicate that multilayer GNRs with incommensurate non-AB stacking and weak interlayer coupling are the best candidates for high-performance GNRFETs. 展开更多
关键词 graphene nanoribbon(GNR) multilayer graphene new channel material field-effect transistor carbon nanotube(CNT)
原文传递
An integrated flexible and reusable graphene field effect transistor nanosensor for monitoring glucose
18
作者 Cong Huang Zhuang Hao +2 位作者 Tianxu Qi Yunlu Pan Xuezeng Zhao 《Journal of Materiomics》 SCIE EI 2020年第2期308-314,共7页
Diabetes is a chronic metabolic disease that has effect on blood sugar level and affects millions of people.We present an integrated flexible and reusable graphene-based field effect transistor(GFET)nanosensor for the... Diabetes is a chronic metabolic disease that has effect on blood sugar level and affects millions of people.We present an integrated flexible and reusable graphene-based field effect transistor(GFET)nanosensor for the detection of glucose using pyrene-1-boronic acid(PBA)as the receptor.The nanosensor fabricated on the polyimide performs GFET-based rapid transduction of the glucose-PBA binding,thereby potentially allowing the detection of glucose that are sampled reliably from human bodily fluids(e.g.,sweat)in wearable sensing applications.Due to the reversible binding interaction between PBA and glucose,reusability of our nanosensor can be realized by exposing graphene surface to acidic solution.In characterizing the stability and reusability of the nanosensor for wearable applications,we investigated the effects of substrate bending,multiple reuse and long-time storage on the equilibrium dissociation constant between the PBA and glucose.Results show that bending,multiple reuse(over 10 times)and long-time storage has negligible effect on the sensing performance.The detection of glucose with a limit of detection(LOD)of 0.15 μM and a dynamic range of 0.05-100 μM,which covers the reference scope of physical examination or screening of diabetes.Hence,our flexible GFET nanosensor is promising for wearable and reusable biosensing applications. 展开更多
关键词 graphene FLEXIBLE REUSABLE Glucose sensor field-effect transistor
原文传递
源漏不对称的石墨烯场效应管特性研究 被引量:1
19
作者 曾荣周 李平 +1 位作者 廖永波 张庆伟 《微电子学与计算机》 CSCD 北大核心 2018年第2期118-121,共4页
石墨烯场效应管(GFET)在栅极和源/漏电极之间存在的不对称的未被栅极覆盖的区域,会引起栅、源和栅、漏电极之间的串联电阻不相等,这将对GFET的性能会产生影响.首次测试了源漏不对称GFET在互换源、漏电极的情况下的输出特性、转移特性和... 石墨烯场效应管(GFET)在栅极和源/漏电极之间存在的不对称的未被栅极覆盖的区域,会引起栅、源和栅、漏电极之间的串联电阻不相等,这将对GFET的性能会产生影响.首次测试了源漏不对称GFET在互换源、漏电极的情况下的输出特性、转移特性和跨导,并采用带源极负反馈电阻的共源极电路模型和石墨烯沟道总电阻计算公式,分析了源漏不对称对器件特性的影响机理.为研制GFET及其他的纳米结构材料晶体管提供了有益的参考. 展开更多
关键词 石墨烯场效应管 源漏不对称 un-gated区域 串联电阻
下载PDF
新型自对准石墨烯场效应晶体管制备工艺
20
作者 邓建国 杨勇 +5 位作者 马中发 韩东 吴勇 张鹏 张策 肖郑操 《半导体技术》 CAS CSCD 北大核心 2013年第7期525-529,共5页
提出了一种新型自对准石墨烯场效应晶体管(graphere field-effect transistor,GFET)制备工艺,该工艺可与现有Si CMOS工艺相兼容。利用该工艺制备的自对准栅GFET器件可以消除传统GFET器件制备过程中存在的栅极与漏极和源极覆盖区的寄生... 提出了一种新型自对准石墨烯场效应晶体管(graphere field-effect transistor,GFET)制备工艺,该工艺可与现有Si CMOS工艺相兼容。利用该工艺制备的自对准栅GFET器件可以消除传统GFET器件制备过程中存在的栅极与漏极和源极覆盖区的寄生电容或栅极与源极和漏极暴露区的寄生电阻,使器件直流特性得到了很大改善。对制作的样品进行直流I-V特性测试时,清楚地观测到了双极型导电特性。制作的沟道长度为1μm的自对准GFET器件样品最大跨导gm为2.4μS/μm,提取的电子与空穴的本征场效应迁移率μeeff和μheff分别为6 924和7 035 cm2/(V·s),顶栅电压VTG为±30 V时,器件的开关电流比Ion/Ioff约为50,远大于目前已报道的最大GFET开关电流比。 展开更多
关键词 石墨烯 石墨烯场效应晶体管(gfet) 自对准 集成电路(IC)
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部