期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Residual fluoride self-activated effect enabling upgraded utilization of recycled graphite anode
1
作者 Shuzhe Yang Qingqing Gao +7 位作者 Yukun Li Hongwei Cai Xiaodan Li Gaoxing Sun Shuxin Zhuang Yujin Tong Hao Luo Mi Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期24-31,I0002,共9页
Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure... Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure and performance.Herein,the residual fluoride self-activated effect is proposed for the upgraded utilization of RG.Simple and low-energy water immersion treatment not only widens the interlayer spacing,but also retains appropriate fluoride on the surface of RG.Theoretical analysis and experiments demonstrate that the residual fluoride can optimize Li~+migration and deposition kinetics,resulting in better Li~+intercalation/deintercalation in the interlayer and more stable Li metal plating/stripping on the surface of RG,As a result,the designed LFP||RG full cells achieve ultrahigh reversibility(~100%Coulombic efficiency),high capacity retention(67%after 200 cycles,0.85 N/P ratio),and commendable adaptability(stable cycling without short-circuiting,0.15 N/P ratio).The energy density is improved from 334 Wh kg^(-1)of 1.1 N/P ratio to 367 Wh kg^(-1)of 0.85 N/P ratio(total mass based on cathode and anode).The exploration of RG by residual fluoride self-activated effect achieves upgraded utilization beyond fresh commercial graphite and highlights a new strategy for efficient reuse of SLIBs. 展开更多
关键词 Spent lithium-ion batteries Recycled graphite anode FLUORIDE Self-activated effect Upgraded utilization
下载PDF
Edge and lithium concentration effects on intercalation kinetics for graphite anodes
2
作者 Keming Zhu Denis Kramer Chao Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期337-347,I0009,共12页
Graphite interfaces are an important part of the anode in lithium-ion batteries(LIBs),significantly influencing Li intercalation kinetics.Graphite anodes adopt different stacking sequences depending on the concentrati... Graphite interfaces are an important part of the anode in lithium-ion batteries(LIBs),significantly influencing Li intercalation kinetics.Graphite anodes adopt different stacking sequences depending on the concentration of the intercalated Li ions.In this work,we performed first-principles calculations to comprehensively address the energetics and dynamics of Li intercalation and Li vacancy diffusion near the no n-basal edges of graphite,namely the armchair and zigzag-edges,at high Li concentration.We find that surface effects persist in stage-Ⅱ that bind Li strongly at the edge sites.However,the pronounced effect previously identified at the zigzag edge of pristine graphite is reduced in LiC_(12),penetrating only to the subsurface site,and eventually disappearing in LiC_(6).Consequently,the distinctive surface state at the zigzag edge significantly impacts and restrains the charging rate at the initial lithiation of graphite anodes,whilst diminishes with an increasing degree of lithiation.Longer diffusion time for Li hopping to the bulk site from either the zigzag edge or the armchair edge in LiC_(6) was observed during high state of charge due to charge repulsion.Effectively controlling Li occupation and diffusion kinetics at this stage is also crucial for enhancing the charge rate. 展开更多
关键词 graphite anode EDGE Interface Lithium-ion batteries Density functional theory
下载PDF
Kinetic Limits of Graphite Anode for Fast‑Charging Lithium‑Ion Batteries 被引量:4
3
作者 Suting Weng Gaojing Yang +9 位作者 Simeng Zhang Xiaozhi Liu Xiao Zhang Zepeng Liu Mengyan Cao Mehmet Nurullah Ateş Yejing Li Liquan Chen Zhaoxiang Wang Xuefeng Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期518-529,共12页
Fast-charging lithium-ion batteries are highly required,especially in reducing the mileage anxiety of the widespread electric vehicles.One of the biggest bottlenecks lies in the sluggish kinetics of the Li^(+)intercal... Fast-charging lithium-ion batteries are highly required,especially in reducing the mileage anxiety of the widespread electric vehicles.One of the biggest bottlenecks lies in the sluggish kinetics of the Li^(+)intercalation into the graphite anode;slow intercalation will lead to lithium metal plating,severe side reactions,and safety concerns.The premise to solve these problems is to fully understand the reaction pathways and rate-determining steps of graphite during fast Li^(+)intercalation.Herein,we compare the Li^(+)diffusion through the graphite particle,interface,and electrode,uncover the structure of the lithiated graphite at high current densities,and correlate them with the reaction kinetics and electrochemical performances.It is found that the rate-determining steps are highly dependent on the particle size,interphase property,and electrode configuration.Insufficient Li^(+)diffusion leads to high polarization,incomplete intercalation,and the coexistence of several staging structures.Interfacial Li^(+)diffusion and electrode transportation are the main rate-determining steps if the particle size is less than 10μm.The former is highly dependent on the electrolyte chemistry and can be enhanced by constructing a fluorinated interphase.Our findings enrich the understanding of the graphite structural evolution during rapid Li^(+)intercalation,decipher the bottleneck for the sluggish reaction kinetics,and provide strategic guidelines to boost the fast-charging performance of graphite anode. 展开更多
关键词 Fast-charging graphite anode Cryogenic transmission electron microscopy(cryo-TEM) High-rate kinetics
下载PDF
Graphite Anode for Potassium Ion Batteries: Current Status and Perspective 被引量:4
4
作者 Xiaodan Li Jinliang Li +4 位作者 Liang Ma Caiyan Yu Zhong Ji Likun Pan Wenjie Mai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期458-469,共12页
With the increased demand from the storage of renewable energy sources,some safe and inexpensive energy storage technologies instead of Li-ion batteries become urgently needed.Therefore,K-ion batteries(KIBs)have attra... With the increased demand from the storage of renewable energy sources,some safe and inexpensive energy storage technologies instead of Li-ion batteries become urgently needed.Therefore,K-ion batteries(KIBs)have attracted much attention and evolved significant development because of the low price,safety,and similar property compared with Li-ion batteries.Due to the high reversibility,stability,and low potential plateau,graphite becomes a current research focus and is regarded as one of the most promising KIB’s anode materials.In this review,we mainly discuss the electrochemical reaction mechanism of graphite during potassiation-depotassiation process and analyze the effects of electrode/electrolyte interface on graphite for Kion storage.Besides,we summarize several kinds of methods to improve the performance of graphite for KIBs,including the design of graphite structure,selection of appropriate binder,solvent chemistry,and salt chemistry.Meanwhile,a concept of“relative energy density”is raised,which can be more accurate to evaluate the genuine electrochemical performance of graphite anode involving the specific capacity and potential.In addition,we also summarize the considerable challenges to current graphite anode in KIBs and we believe our work will offer alterative solutions to further explore high-performance graphite anode of K-ion storage. 展开更多
关键词 electrochemical reaction mechanism graphite anode K-ion batteries methods to improve performance
下载PDF
Revealing the critical effect of solid electrolyte interphase on the deposition and detriment of Co(Ⅱ) ions to graphite anode 被引量:2
5
作者 Qiming Xie Jiawei Chen +6 位作者 Lidan Xing Xianggui Zhou Zekai Ma Binhong Wu Yilong Lin Hebing Zhou Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期389-396,I0011,共9页
"Dissolution,migration,and deposition"of transition metal ions (TMIs) result in capacity degradation of lithium-ion batteries (LIBs).Understanding such detrimental mechanism of TMIs is critical to the develo... "Dissolution,migration,and deposition"of transition metal ions (TMIs) result in capacity degradation of lithium-ion batteries (LIBs).Understanding such detrimental mechanism of TMIs is critical to the development of LIBs with long cycle life.In most previous works,TMIs were directly introduced into the electrolyte to investigate such a detrimental mechanism.In these cases,the TMIs are deposited directly on the fresh anode surface.However,in the practical battery system,the TMIs are deposited on the anode covered with solid electrolyte interphase (SEI) film.Whether the pre-presence of SEI film on anode surface influences the deposition and detriment of TMIs is unclear.In this work,the deposition of Co element on graphite anode with and without SEI film were systematically studied.The results clearly show that,in comparison with that of fresh graphite (SEI-free),the presence of SEI film aggravates the deposition of Co ions due to the Li^(+)–Co^(2+) ion exchange between the SEI and Co^(2+)-containing electrolyte without the driving of the electric field,leading to faster capacity fading of graphite anode.Therefore,how to regulate electrolytes and film-forming additives to design the components of SEI and prevent its exchange with TMIs,is a crucial way to inhibit the deposition and detriment of TMIs on graphite anode. 展开更多
关键词 Lithium-ion batteries Transition metal ions Ion exchange graphite anode SEI film
下载PDF
A Novel Modification Approach for Natural Graphite Anode of Li-ion Batteries
6
作者 周向阳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期85-89,共5页
To improve the rate capability and cyclability of natural graphite anode for Li-ion batteries,a novel modification approach was developed.The modification approach included two steps:(a)high-energy ball milling in a r... To improve the rate capability and cyclability of natural graphite anode for Li-ion batteries,a novel modification approach was developed.The modification approach included two steps:(a)high-energy ball milling in a rotary autoclave containing alumina balls,H_3PO_4 and ethanol;(b)coating with pyrolytic carbon from phenlic resin.The treated graphite shows obvious improvement compared with the original natural graphite in electrochemical properties such as cyclability and rate capability,especially at high current density.The primary reasons leading to the improvement in rate capability and cyclability are that the diffusion impedance of Li^+ in graphite is reduced due to the fact that P filtered into graphite layers can mildly increase interlayer distances,and the fact that the structural stability of graphite surface is enhanced since the coated pyrolytic carbon can depress the co-intercalation of solvated lithium ion. 展开更多
关键词 Li-ion batteries natural graphite anode high-energy ball milling COATING pyrolytic carbon
下载PDF
Impedance Characterization of the Film Formation Process at the Graphite Anodes
7
作者 Bo Hua DENG Yong Fang LI Hua Quan YANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2000年第10期915-918,共4页
In this paper, the formation mechanism of the passive SEI film at the natural graphite anodes was investigated with tilt: electrochemical impedance spectroscopy (EIS). A characteristic semicircle was observed in the l... In this paper, the formation mechanism of the passive SEI film at the natural graphite anodes was investigated with tilt: electrochemical impedance spectroscopy (EIS). A characteristic semicircle was observed in the lower frequency range of the EIS spectrum for the irreversible charge process (lithium intercalation) at ca. 0.75V, 0.40V and 0.20V. 展开更多
关键词 electrochemical impedance spectroscopy surface film graphite anodes Li-ion battery
下载PDF
A weakly-solvated ether-based electrolyte for fast-charging graphite anode
8
作者 Xiao Zhu Yanbing Mo +3 位作者 Jiawei Chen Gaopan Liu Yonggang Wang Xiaoli Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期526-532,共7页
Weakly-solvated electrolytes(WSEs)utilizing solvents with weak coordination ability offer advantages for low-potential graphite anode owing to their facile desolvation process and anions-derived inorganic-rich solid e... Weakly-solvated electrolytes(WSEs)utilizing solvents with weak coordination ability offer advantages for low-potential graphite anode owing to their facile desolvation process and anions-derived inorganic-rich solid electrolyte interphase(SEI)film.However,these electrolytes face challenges in achieving a balance between the weak solvation affinity and high ionic conductivity,as well as between rigid inorganic-rich SEI and flexible SEI for long-term stability.Herein,we introduce 1,3-dioxolane(DOL)and lithium bis(trifluoromethanesulfonyl)-imide(LiTFSI)as functional additives into a WSE based on nonpolar cyclic ether(1,4-dioxane).The well-formulated WSE not only preserves the weakly solvated features and anion-dominated solvation sheath,but also utilizes DOL to contribute organic species for stabilizing the SEI layer.Benefitting from these merits,the optimized electrolyte enables graphite anode with excellent fast-charging performance(210 mAh/g at 5 C)and outstanding cycling stability(600 cycles with a capacity retention of 82.0%at room temperature and 400 cycles with a capacity retention of 80.4%at high temper-ature).Furthermore,the fabricated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)||graphite full cells demonstrate stable operation for 140 cycles with high capacity retention of 80.3%.This work highlights the potential of tailoring solvation sheath and interphase properties in WSEs for advanced electrolyte design in graphite-based lithium-ion batteries. 展开更多
关键词 Weakly-solvated solvent Bisalt ether-based electrolyte graphite anode NCM||graphite battery Interfacial optimization
原文传递
Recycle spent graphite to defect-engineered,high-power graphite anode 被引量:10
9
作者 Jiawei Luo Jingchao Zhang +5 位作者 Zhaoxin Guo Zhedong Liu Shuming Dou Wei-Di Liu Yanan Chen Wenbin Hu 《Nano Research》 SCIE EI CSCD 2023年第4期4240-4245,共6页
Graphite is a dominant anode material for lithium-ion batteries(LIBs)due to its outstanding electrochemical performance.However,slow lithium ion(Li+)kinetics of graphite anode restricts its further application.Herein,... Graphite is a dominant anode material for lithium-ion batteries(LIBs)due to its outstanding electrochemical performance.However,slow lithium ion(Li+)kinetics of graphite anode restricts its further application.Herein,we report that high-temperature shock(HTS)can drive spent graphite(SG)into defect-rich recycled graphite(DRG)which is ideal for high-rate anode.The DRG exhibits the charging specific capacity of 323 mAh/g at a high current density of 2 C,which outperforms commercial graphite(CG,120 mAh/g).The eminent electrochemical performance of DRG can be attributed to the recovery of layered structure and partial remaining defects of SG during ultrafast heating and cooling process,which can effectively reduce total strain energy,accelerate the phase transition in thermodynamics and improve the Li+diffusion.This study provides a facile strategy to guide the re-graphitization of SG and design high performance battery electrode materials by defect engineering from the atomic level. 展开更多
关键词 ULTRAFAST recycling defect-rich graphite anode high-temperature shock
原文传递
Alkali Metal Ion Substituted Carboxymethyl Cellulose as Anode Polymeric Binders for Rapidly Chargeable Lithium-Ion Batteries
10
作者 Seoungwoo Byun Zhu Liu +9 位作者 Dong Ok Shin Kyuman Kim Jaecheol Choi Youngjoon Roh Dahee Jin Seungwon Jung Kyung-Geun Kim Young-Gi Lee Stefan Ringe Yong Min Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期77-82,共6页
The increasing demand for short charging time on electric vehicles has motivated realization of fast chargeable lithium-ion batteries(LIBs).However,shortening the charging time of LIBs is limited by Li^(+)intercalatio... The increasing demand for short charging time on electric vehicles has motivated realization of fast chargeable lithium-ion batteries(LIBs).However,shortening the charging time of LIBs is limited by Li^(+)intercalation process consisting of liquid-phase diffusion,de-solvation,SEI crossing,and solid-phase diffusion.Herein,we propose a new strategy to accelerate the de-solvation step through a control of interaction between polymeric binder and solvent-Li^(+)complexes.For this purpose,three alkali metal ions(Li^(+),Na^(+),and K^(+))substituted carboxymethyl cellulose(Li-,Na-,and K-CMC)are prepared to examine the effects of metal ions on their performances.The lowest activation energy of de-solvation and the highest chemical diffusion coefficient were observed for Li-CMC.Specifically,Li-CMC cell with a capacity of 3 mAh cm^(-2)could be charged to>95%in 10 min,while a value above>85%was observed after 150 cycles.Thus,the presented approach holds great promise for the realization of fast charging. 展开更多
关键词 de-solvation digital twins fast charging graphite anodes polymeric binders
下载PDF
ZnO-Embedded Expanded Graphite Composite Anodes with Controlled Charge Storage Mechanism Enabling Operation of Lithium-Ion Batteries at Ultra-Low Temperatures 被引量:1
11
作者 Kun Ryu Michael J.Lee +1 位作者 Kyungbin Lee Seung Woo Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期31-39,共9页
As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered... As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation. 展开更多
关键词 diffusive and capacitive charge storages expanded graphite composites anode lithium-ion battery low-temperature operation transition metal oxide
下载PDF
Stable operation of highly loaded pure Si-Fe anode under ambient pressure via carboxy silane-directed robust solid electrolyte interphase
12
作者 Guntae Lim Dong Guk Kang +6 位作者 Hyeon Gyu Lee Yen Hai Thi Tran Kihun An Junghyun Choi Kwang Chul Roh Do Youb Kim Seung-Wan Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期568-576,共9页
Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of... Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of diacetoxydimethylsilane(DAMS)additive-directed SEI stabilization is proposed for a stable operation of Si-0.33FeSi_(2)(named as Si-Fe)anode without graphite,which provides siloxane inorganics and organics enrichment that compensate insufficient passivation of fluoroethylene carbonate(FEC)additive and reduce a dependence on FEC.Unprecedented stable cycling performance of highly loaded(3.5 mA h cm^(-2))pure Si-Fe anode is achieved with 2 wt%DAMS combined with 9 wt%FEC additives under ambient pressure,yielding high capacity 1270 mA h g^(-1)at 0.5 C and significantly improved capacity retention of 81% after 100 cycles,whereas short circuit and rapid capacity fade occur with FEC only additive.DAMS-directed robust SEI layer dramatically suppresses swelling and particles crossover through separator,and therefore prevents short circuit,demonstrating a possible operation of pure Si or Sidominant anodes in the next-generation high-energy-density and safe LIBs. 展开更多
关键词 High-energy Li-ion battery Pure Si-Fe anode without graphite Silane additive SEI layer Suppressed swelling
下载PDF
Numerical reconstruction of microstructure of graphite anode of lithium-ion battery 被引量:3
13
作者 Shaoyang He Jianbang Zeng +1 位作者 Bereket Tsegai Habte Fangming Jiang 《Science Bulletin》 SCIE EI CAS CSCD 2016年第8期656-664,共9页
Due to the presence of graphite flake cascades, the real graphite anode of Li-ion battery shows non-iso- tropic characteristic. The present work developed an ellipsoid-based simulated annealing method and numeri- call... Due to the presence of graphite flake cascades, the real graphite anode of Li-ion battery shows non-iso- tropic characteristic. The present work developed an ellipsoid-based simulated annealing method and numeri- cally reconstructed the three-dimensional microstructure of a graphite anode. The reconstructed anode is a composite of three clearly distinguished phases: pore (or electrolyte), graphite, and solid additives, well representing the non- isotropic heterogeneous characteristic of real graphite anode. Characterization analysis of the reconstructed electrode gives information such as the connectivity of individual phase, the specific interracial area between solid and pore phase, and the pore size distribution. The effects of the ellipsoid size on the structural characteristics of graphite anode were particularly studied. As the size of the ellipsoidal particle slightly increases, the average pore diameter increases and as a result the specific interfacial area between the solid and pore phase in the reconstructed area decreases; compared with the equatorial radius, the polar radius of ellipsoidal graphite particles has more sig- nificant influence on the characteristics of electrode microstructure. 展开更多
关键词 Lithium-ion battery graphite anode Microstructure reconstruction Simulated annealingmethod Ellipsoid particles
原文传递
Research Progress of Lithium Plating on Graphite Anode in Lithium-Ion Batteries 被引量:3
14
作者 Daozhong Hu Lai Chen +7 位作者 Jun Tian Yuefeng Su Ning Li Gang Chen Yulu Hu Yueshan Dou Shi Chen Feng Wu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2021年第1期165-173,共9页
Lithium plating on graphite anode is triggered by harsh conditions of fast charge and low temperature,which sig-nificantly accelerates SOH(state of health)degradation and may cause safety issues of lithium ion batteri... Lithium plating on graphite anode is triggered by harsh conditions of fast charge and low temperature,which sig-nificantly accelerates SOH(state of health)degradation and may cause safety issues of lithium ion batteries(LIBs).This paper has reviewed recent research progress of lithium plating on graphite anode.Firstly,we summarize the forming mechanisms of Li plating with(corresponding influence factors,the detect-ing methods and hazard of Li plating.Then,approaches to suppress Li plating are discussed,including anode surface modification,electrolyte composition optimization and development of optimal charge.strategies.Finally,we con-clude and propose the remaining challenges and prospects in terms of mechanism research,detecting approaches,and suppressing methods of Li plating.This review highlights the development of Li plating research and plays a guiding rule of further study on Li plating in LIBs. 展开更多
关键词 LITHIUM PLATING graphite anode Electron microscopy Low-temperature physics
原文传递
Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode 被引量:3
15
作者 Hao-Jie Liang Zhen-Yi Gu +8 位作者 Xin-Xin Zhao Jin-Zhi Guo Jia-Lin Yang Wen-Hao Li Bao Li Zhi-Ming Liu Zhong-Hui Sun Jing-Ping Zhang Xing-Long Wu 《Science Bulletin》 SCIE EI CAS CSCD 2022年第15期1581-1588,M0004,共9页
Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reaction... Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reactions on the aggressively reactive surface is inevitable given the scarcity of effective protecting layers.Herein,by introducing a flame-retardant localized high-concentration electrolyte with retentive solvation configuration and relatively weakened anion-coordination and non-solvating fluorinated ether,the rational solid electrolyte interphase characterized by well-balanced inorganic/organic components is tailored in situ.This effectively prevented solvents from excessively decomposing and simultaneously improved the resistance against K-ion transport.Consequently,the graphite anode retained a prolonged cycling capability of up to 1400 cycles(245 mA h g,remaining above 12 mon)with an excellent capacity retention of as high as 92.4%.This is superior to those of conventional and high-concentration electrolytes.Thus,the optimized electrolyte with moderate salt concentration is perfectly compatible with graphite,providing a potential application prospect for K-storage evolution. 展开更多
关键词 graphite anode K-ion batteries Localized high-concentration electrolyte Interphase modification
原文传递
Triethoxysilane with oligo(ethylene oxide) substituent as film forming additive for graphite anode 被引量:1
16
作者 Xue-ying QIN Jing-lun WANG +2 位作者 Dao-ping TANG Yong-jin MAI Ling-zhi ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第7期514-519,共6页
{3-[2-(2-methoxyethoxy) ethoxy]-propyl} triethoxysilane (TESM2) was synthesized and used as an electrolyte additive to improve the performances of lithium-ion batteries (LIBs). The electrochemical properties of the el... {3-[2-(2-methoxyethoxy) ethoxy]-propyl} triethoxysilane (TESM2) was synthesized and used as an electrolyte additive to improve the performances of lithium-ion batteries (LIBs). The electrochemical properties of the electrolyte (1 mol/L lithium hexafluorophosphate (LiPF 6 )/ethylene carbonate (EC):diethylene carbonate (DEC):dimethyl carbonate (DMC), 1:1:1) with different contents of TESM2 were characterized by ionic conductivity measurement, galvanostatic charge/discharge test of graphite/Li half cells, and electrochemical impedance spectroscopy. Both the cycling performances and C-rate capabilities of graphite/Li half cells were significantly improved with an optimized content of 15% TESM2 in the electrolyte. The graphite/Li half cell delivered a very high specific capacity of 370 mAh/g at 0.2C rate without any capacity loss for 60 cycles, and retained a capacity of 292 mAh/g at 2C rate. The solid electrolyte interphase (SEI) film on the surface of the graphite anode was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), indicating that TESM2 was effectively involved in the formation of SEI film on the surface of graphite. 展开更多
关键词 TRIETHOXYSILANE Electrolyte additive Solid electrolyte interphase graphite anode Lithium-ion batteries (LIBs)
原文传递
The Film-forming Properties of Propylene Carbonate (PC) on Graphite Anodes
17
作者 Honghe Zheng, Qunting Qu (Department of Chemistry, Henan Normal University, Xinxiang 453007, China) 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期851-,共1页
1 Results Propylene carbonate (PC) is well known having a series of excellent properties including low melting point,wide liquid-phase range and wide electrochemical window.In addition,PC is well compatible with diffe... 1 Results Propylene carbonate (PC) is well known having a series of excellent properties including low melting point,wide liquid-phase range and wide electrochemical window.In addition,PC is well compatible with different cathode materials.However,the poor compatibility of PC with graphite anode limits the utilization of PC solvent into lithium ion batteries.It is generally accepted that PC molecules co-intercalate into graphite interlayer with solvated Li ions and cause exfoliation of graphite structur... 展开更多
关键词 PC graphite anode ELECTROLYTE ADDITIVE
下载PDF
Regulated adsorption-diffusion and enhanced charge transfer in expanded graphite cohered with N,B bridge-doping carbon patches to boost K-ion storage
18
作者 Haiyan Wang Haowen Du +5 位作者 Hucheng Zhang Songjie Meng Zhansheng Lu Hao Jiang Chunzhong Li Jianji Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期67-74,I0003,共9页
The great challenges are remained in constructing graphite-based anode with well built-in structures to accelerate kinetics and enhance stability in the advanced K-ion batteries(KIBs).Here,we firstly report the design... The great challenges are remained in constructing graphite-based anode with well built-in structures to accelerate kinetics and enhance stability in the advanced K-ion batteries(KIBs).Here,we firstly report the design of expanded graphite cohered by N,B bridge-doping carbon patches(NBEG)for efficient K-ion adsorption/diffusion and long-term durability.It is the B co-doping that plays a crucial role in maximizing doping-site utilization of N atoms,balancing the adsorption-diffusion kinetics,and promoting the charge transfer between NBEG and K ions.Especially,the robust lamellar structure,suitable interlayer distance,and rich active sites of the designed NBEG favor the rapid ion/electron transfer pathways and high K-ion storage capacity.Consequently,even at a low N,B doping concentration(4.36 at%,2.07 at%),NBEG anode shows prominent electrochemical performance for KIBs,surpassing most of the advanced carbon-based anodes.Kinetic studies,density functional theory simulations,and in-situ Raman spectroscopy are further performed to reveal the K-ion storage mechanism and confirm the critical actions of co-doping B.This work offers the new methods for graphite-electrode design and the deeper insights into their energy storage mechanisms in KIBs. 展开更多
关键词 Heteroatom dual-doping graphite anodes K-ion batteries Adsorption and diffusion energy Charge transfer
下载PDF
The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries 被引量:10
19
作者 Chong Yan Yu-Xing Yao +4 位作者 Wen-Long Cai Lei Xu Stefan Kaskel Ho Seok Park Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期335-338,共4页
Lithium-ion battery has greatly changed our lifestyle and the solid electrolyte interphase(SEI)covered on the graphite anode determines the service life of a battery.The formation method and the formation temperature ... Lithium-ion battery has greatly changed our lifestyle and the solid electrolyte interphase(SEI)covered on the graphite anode determines the service life of a battery.The formation method and the formation temperature at initial cycle of a battery determine the feature of the SEI.Herein,we investigate the gap of formation behavior in both a half cell(graphite matches with lithium anode)and a full cell(graphite matches with NCM,short for LiNixCoyMn1-x-yO2)at different temperatures.We conclude that high temperature causes severe side reactions and low temperature will result in low ionic conductive SEI layer,the interface formed at room temperature owns the best ionic conductivity and stability. 展开更多
关键词 graphite anode Fast charging Solid electrolyte interphase(SEI) Full battery Formation temperature
下载PDF
Understanding the mechanism of capacity increase during early cycling of commercial NMC/graphite lithium-ion batteries 被引量:7
20
作者 Jia Guo Yaqi Li +3 位作者 Jinhao Meng Kjeld Pedersen Leonid Gurevich Daniel-Ioan Stroe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期34-44,I0003,共12页
A capacity increase is often observed in the early stage of Li-ion battery cycling.This study explores the phenomena involved in the capacity increase from the full cell,electrodes,and materials perspective through a ... A capacity increase is often observed in the early stage of Li-ion battery cycling.This study explores the phenomena involved in the capacity increase from the full cell,electrodes,and materials perspective through a combination of non-destructive diagnostic methods in a full cell and post-mortem analysis in a coin cell.The results show an increase of 1%initial capacity for the battery aged at 100%depth of discharge(DOD)and 45℃.Furthermore,large DODs or high temperatures accelerate the capacity increase.From the incremental capacity and differential voltage(IC-DV)analysis,we concluded that the increased capacity in a full cell originates from the graphite anode.Furthermore,graphite/Li coin cells show an increased capacity for larger DODs and a decreased capacity for lower DODs,thus in agreement with the full cell results.Post-mortem analysis results show that a larger DOD enlarges the graphite dspace and separates the graphite layer structure,facilitating the Li+diffusion,hence increasing the battery capacity. 展开更多
关键词 Capacity increasing Lithium-ion battery Full cell Coin cell graphite anode
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部