期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Time-varying gravity field model of Sichuan-Yunnan region based on the equivalent mass source model
1
作者 Xiaozhen Hou Shi Chen +2 位作者 Linhai Wang Jiancheng Han Dong Ma 《Geodesy and Geodynamics》 EI CSCD 2023年第6期566-572,共7页
High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity meas... High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity measurement,the repeated terrestrial gravity observation can provide a more high-order signal related to the shallow crust and subsurface.However,the suitable and unified method for gravity model estimation is a key problem for further applications.In this study,we introduce the spherical hexahedron element to simulate the field source mass and forward model the change of gravity field located at the Sichuan-Yunnan region(99—104°E,23—29°N)in the four epochs from 2015 to 2017.Compared to the experimental results based on Slepian or spherical harmonics frequency domain method,this alternative approach is suitable for constructing the equivalent mass source model of regional-scale gravity data,by introducing the first-order smooth prior condition of gravity time-varying signal to suppress the high-frequency component of the signal.The results can provide a higher spatial resolution reference for regional gravity field modeling in the Sichuan-Yunnan region. 展开更多
关键词 gravity change Equivalent source model Time-varying gravity model gravity field INVERSION
原文传递
Review of the Research Progress on Static Earth Gravity Field and Vertical Datum in China during 2019—2023
2
作者 Tao JIANG Xinyu XU +6 位作者 Yonghai CHU Taoyong JIN Wei LIANG Yihao WU Yanguang FU Yongqi ZHAO Xinwei GUO 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第3期76-86,共11页
The contribution presents the representative research progress on global static gravity field modeling,regional geoid/quasigeoid determination,vertical datum study,as well as the theory,algorithm and software for grav... The contribution presents the representative research progress on global static gravity field modeling,regional geoid/quasigeoid determination,vertical datum study,as well as the theory,algorithm and software for gravity field study in China from 2019 to 2023,which are the highlights of the chapter 6“Progress in Earth Gravity Model and Vertical Datum”in the“2019—2023 China National Report on Geodesy”that submitted to the International Association of Geodesy(IAG).In addition,suggestions are proposed to promote the research in the fields of earth gravity field,geoid/quasigeoid and vertical datumin China according to trends of international geodesy and related disciplines. 展开更多
关键词 Earth gravity field GEOID International Height Reference System quasigeoid vertical datum
下载PDF
A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE,GRACE,Satellite Altimetry,and EGM2008 被引量:10
3
作者 Wei Liang Jiancheng Li +2 位作者 Xinyu Xu Shengjun Zhang Yongqi Zhao 《Engineering》 SCIE EI 2020年第8期860-878,共19页
This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based ... This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based on the theory of the ellipsoidal harmonic analysis and coefficient transformation(EHA-CT).We first derive the related formulas of the EHA-CT method,which is used for computing the spherical harmonic coefficients from grid area-mean and point gravity anomalies on the ellipsoid.The derived formulas are successfully evaluated based on numerical experiments.Then,based on the derived least-squares formulas of the EHA-CT method,we develop the new model SGG-UGM-2 up to degree 2190 and order 2159 by combining the observations of the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),the normal equation of the Gravity Recovery and Climate Experiment(GRACE),marine gravity data derived from satellite altimetry data,and EGM2008-derived continental gravity data.The coefficients of degrees 251–2159 are estimated by solving the block-diagonal form normal equations of surface gravity anomalies(including the marine gravity data).The coefficients of degrees 2–250 are determined by combining the normal equations of satellite observations and surface gravity anomalies.The variance component estimation technique is used to estimate the relative weights of different observations.Finally,global positioning system(GPS)/leveling data in the mainland of China and the United States are used to validate SGG-UGM-2 together with other models,such as European improved gravity model of the earth by new techniques(EIGEN)-6C4,GECO,EGM2008,and SGG-UGM-1(the predecessor of SGG-UGM-2).Compared to other models,the model SGG-UGM-2 shows a promising performance in the GPS/leveling validation.All GOCE-related models have similar performances both in the mainland of China and the United States,and better performances than that of EGM2008 in the mainland of China.Due to the contribution of GRACE data and the new marine gravity anomalies,SGG-UGM-2 is slightly better than SGG-UGM-1 both in the mainland of China and the United States. 展开更多
关键词 gravity field model GOCE GRACE Satellite altimetry Block-diagonal least-squares
下载PDF
Determination of the degree 120 time-variable gravity field in the Sichuan-Yunnan region using Slepian functions and terrestrial measurements 被引量:4
4
作者 Jiancheng Han Shi Chen +2 位作者 Zhaohui Chen Hongyan Lu Weimin Xu 《Earthquake Science》 2021年第3期211-221,共11页
The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,suc... The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,such as surface deformation,groundwater storage changes,and mass migration before and after earthquakes.Based on repeated terrestrial gravity measurements at 198 gravity stations in the Sichuan-Yunnan region(SYR)from 2015 to 2017,we determine a time series of degree 120 gravity fields using the localized spherical harmonic(Slepian)basis functions.Our results show that adopting the first 6 Slepian basis functions is sufficient for effective localized Slepian modeling in the SYR.The differences between two gravity campaigns at the same time of year show an obvious correlation with tectonic features.The degree 120 timevariable gravity models presented in this paper will benefit the study of the regional mass migration inside the crust of the SYR and supplement the existing geophysical models for the China Seismic Experimental Site. 展开更多
关键词 Sichuan-Yunnan region terrestrial gravity measurements time-variable gravity Slepian basis function regional gravity field
下载PDF
Analysis of limitations on recovery of gravity field based on satellite gravity gradient data 被引量:3
5
作者 Xiaoyun Wan Jinhai Yu +2 位作者 Lei Liang Jiangjun Ran Richard Fiifi Annan 《Geodesy and Geodynamics》 CSCD 2021年第1期31-42,共12页
Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,whi... Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,which leads to only a few applications in time-variable gravity investigation.The reason is that some factors limit the accuracy of the gravity field recovered using gradient data,including accuracy of the gravity gradient observations,measurement bandwidth(MBW)of gradiometer,satellite inclination,etc.This paper aims at analyzing the influence of these limitations on gravity field recovery and discusses the possibility of time-variable gravity field detection by using gravity gradient observations.Firstly,for arbitrary satellite orbit inclination,we give the frequency distributions of all the components of gravity gradients(i.e.Txx;Tyy;Tzz;Txy;Txz and Tyz,).The results show that the maximum frequency of each component of the gravity gradients is the same,i.e.l=Ts(l is degree of the gravity field model,Ts is the orbital periods),and it is not influenced by the inclination of the satellite orbits.Secondly,the paper gives a theory proof to explain why only the low orders of the coefficients are influenced by polar gaps.Big polar gaps are experimented by a numerical test with inclination of 45°.Finally,considering that the measurement bandwidth can be expanded and accuracy of gradient observations can be improved by superconducting gravity gradiometer(SGG)compared to gradiometer used in Gravity field and steadystate Ocean Circulation Explorer(GOCE),the possibility of detecting time-variable gravity using gravity gradient observations is discussed.The results show that the SGG creates errors in MBW with magnitude of 0.014 m E,which is smaller than the magnitude of the time-variable gravity gradient signals(i.e.,0.02 m E)derived from Gravity Recovery and Climate Experiment(GRACE)gravity field models.This indicates the potential of SGG in time-variable gravity detection. 展开更多
关键词 gravity gradients Gradiometer measurement bandwidth Frequency analysis Polar gaps Time-variable gravity field
原文传递
Bearing capacity of surface circular footings on granular material under low gravity fields 被引量:2
6
作者 Pin-Qiang Mo Guoqing Zhou +1 位作者 Feng Gao Ruilin Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第3期612-625,共14页
Low gravity fields have been simulated through magnetic acceleration to conduct experimental study on bearing capacity of circular footings on a type of crushable planetary regolith simulant,which has comparable densi... Low gravity fields have been simulated through magnetic acceleration to conduct experimental study on bearing capacity of circular footings on a type of crushable planetary regolith simulant,which has comparable density and particle size distribution of lunar soil.The loadesettlement responses of surface spread footings are obtained by investigating the relative density,footing size and gravity effects.Applying the hyperbolic asymptote method,normalised foundation stiffness and ultimate bearing capacity are obtained by curve fitting and predicted by power functions using multivariate nonlinear regression.The results show that the nonlinear gravity effect is not negligible,related to stress condition,soil dilatancy and mobilised friction angle.A cone penetration test(CPT)-based method for prediction of bearing capacity is proposed with correlations between ultimate bearing capacity of footings and shallow penetration stiffness of CPTs,avoiding the uncertainties of soil property estimations.Analyses of allowable bearing capacity and footing influence zone in consideration of footing size and gravity effects could therefore improve the design of shallow foundations on the Moon and Mars,and provide new understandings and potential implications to the bearing capacity of shallow foundations on crushable granular material in both terrestrial and extraterrestrial geotechnical engineering. 展开更多
关键词 Low gravity fields Bearing capacity Shallow foundation Planetary regolith simulant
下载PDF
Simulation of earth gravity field using satellite constellation with variable inclination configuration 被引量:1
7
作者 Qian Zhao Weiping Jiang +1 位作者 Xinyu Xu Xiancai Zou 《Geodesy and Geodynamics》 CSCD 2021年第5期323-328,共6页
Based on a satellite constellation composed of two GRACE-type satellite formations with different inclinations(near polar orbit + low inclination) and the theory of repeat orbit cycle, we discuss the methods for selec... Based on a satellite constellation composed of two GRACE-type satellite formations with different inclinations(near polar orbit + low inclination) and the theory of repeat orbit cycle, we discuss the methods for selecting medium-low inclinations for global and local gravity fields. The effects of this constellation configuration on gravity field inversion are comparatively analyzed using a whole-course dynamics simulation. The results show that compared with the single GRACE-type satellite formation,the use of satellite constellations with different inclination configurations improves the gravity solution precision by 34%. The inclusion of multi-directional observations can improve the spatio-temporal resolution of the satellite missions, and yield gravity field solutions with higher isotropic sensitivity.Furthermore, it is necessary to select the optimal low inclination according to the study area, which will have a significant influence on the gravity field solution. 展开更多
关键词 Satellite constellation Low inclination Multi-directional observations Inversion of gravity field
原文传递
GRACE time-varying gravity field solutions based on PANDA software
8
作者 Xiang Guo Qile Zhao 《Geodesy and Geodynamics》 2018年第2期162-168,共7页
The conventional dynamic approach for gravity filed modelling has been implemented in the PANDA(Position and Navigation Data Analyst) software. A variant of the so-called 'two-step' method for gravity field mo... The conventional dynamic approach for gravity filed modelling has been implemented in the PANDA(Position and Navigation Data Analyst) software. A variant of the so-called 'two-step' method for gravity field modelling is adopted for this purpose, where the GRACE(Gravity Recovery and Climate Experiment)orbits are derived from the GPS(Global Positioning System) data in a first step followed by a simultaneous determination of dynamic orbit and gravity filed from the GPS-derived orbits and K-band rangerate measurements in a second step. In this way, the monthly gravity field solutions complete to degree and order 96 are produced for the period Jan. 2005 to Dec. 2010. Their performance is assessed by comparing them with the official solutions, i.e., CSR RL05, GFZ RL05 a and JPL RL05. A comparison in the spectral domain in terms of geoid heights reveals that the obtained solutions present the smallest degree amplitudes at degree 30-75. A further analysis of mass changes in the spatial domain demonstrates that the main signals observed from the obtained solutions are in great agreement with those from the official solutions. Remarkably, the correlation coefficients of mass changes in large river basins from the official solutions with respect to those from the obtained solutions are all above 0.97. These results demonstrate that the obtained solutions are comparable to the official solutions. 展开更多
关键词 Time-varying gravity field PANDA(Position and Navigation Data Analyst) GRACE(gravity Recovery and Climate Experiment)
原文传递
A magneto -thermo-elastic problem for a half-space without energy dissipation subjected to rotation and gravity field 被引量:3
9
作者 A.M.Abd-Alla S.M.Abo-Dahab +1 位作者 S.M.Ahmed M.M.Rashid 《Journal of Ocean Engineering and Science》 SCIE 2019年第1期55-63,共9页
The prime objective of the present paper is to analyze the effects of the rotation,magnetic field and gravity in a thermo-elastic half-space containing heat source on the boundary of the half-space.The medium assumed ... The prime objective of the present paper is to analyze the effects of the rotation,magnetic field and gravity in a thermo-elastic half-space containing heat source on the boundary of the half-space.The medium assumed under consideration is traction free,homogeneous,isotropic,as well as without energy dissipation.The normal mode analysis and eigenvalue approach technique are used to solve the resulting non-dimensional coupled equations.The comparisons for the physical quantities are established numerically and represented graphically in different cases with respect to the used effects.A comparative and remarkable study has been carried out through various graphs to deliberate the consequences of different parameter on the displacement components,stress components and temperature. 展开更多
关键词 Green-Naghdi theory THERMO-ELASTICITY Energy dissipation ROTATION Magnetic field gravity field.
原文传递
Modeling of Earth’s Gravity Fields Visualization Based on Quad Tree 被引量:2
10
作者 LUO Zhicai LI Zhenhai ZHONG Bo 《Geo-Spatial Information Science》 2010年第3期216-220,共5页
The problems of the earth's gravity fields' visualization are both focus and puzzle currently. Aiming at multiresolution rendering, modeling of the Earth's gravity fields' data is discussed in the pape... The problems of the earth's gravity fields' visualization are both focus and puzzle currently. Aiming at multiresolution rendering, modeling of the Earth's gravity fields' data is discussed in the paper by using LOD algorithm based on Quad Tree. First, this paper employed the method of LOD based on Quad Tree to divide up the regional gravity anomaly data, introduced the combined node evaluation system that was composed of viewpoint related and roughness related systems, and then eliminated the T-cracks that appeared among the gravity anomaly data grids with different resolutions. The test results demonstrated that the gravity anomaly data grids' rendering effects were living, and the computational power was low. Therefore, the proposed algorithm was a suitable method for modeling the gravity anomaly data and has potential applications in visualization of the earth's gravity fields. 展开更多
关键词 LOD Quad Tree earth’s gravity fields multiresolution rendering
原文传递
Gravity and magnetic field characteristics and regional ore prospecting of the Yili ancient continent, West Tianshan, Xinjiang Uygur Autonomous Region, China 被引量:2
11
作者 Xue-zhong Yu Yi-yuan He +3 位作者 Meng Wang Jian Zhang Xuan-jie Zhang Zheng-guo Fan 《China Geology》 2020年第1期104-112,共9页
Gold,iron,copper,lead-zinc and other mineral exploration in West Tianshan,Xinjiang Uygur Autonomous Region,has made remarkable progress in recent years.However,due to the dispute on the tectonic division of West Tians... Gold,iron,copper,lead-zinc and other mineral exploration in West Tianshan,Xinjiang Uygur Autonomous Region,has made remarkable progress in recent years.However,due to the dispute on the tectonic division of West Tianshan,the ore-controlling factors and the regional metallogenic laws are controversial.The authors analyze regional gravity data and notice that the high-value region corresponds to the Yili ancient continent,thus the southeastern boundary of the Yili ancient continent is delineated.Comparative analysis of gravity,aeromagnetic and geologic data reveals that the Tulasu basin,where some medium to large epithermal gold deposits locate,lies above the Yili ancient continent;the Yili Carboniferous-Permian rift extends in E-W direction,numbers of copper deposits have been found in the mid-west section of the rift which lies above the Yili ancient continent,whereas few copper deposits have been discovered in the east section which is outside the Yili ancient continent.Accordingly,the Yili ancient continent may be rich in gold,copper and other metal elements;the metal-bearing hydrothermal solution moves up with the activity of magmatism,and deposits in the favorable places(the Tulasu basin and the Yili Carboniferous-Permian rift),forming numerous small and medium gold,copper deposits,as well as some large and super-large gold deposits.Therefore,the tectonic-magmatic hydrothermal zone above the Yili ancient continent should be the prospective area for epithermal gold and copper polymetallic deposits. 展开更多
关键词 Yili ancient continent Yili Carboniferous-Permian rift gravity field Epithermal gold deposit Copper polymetallic deposit Geophysical and remote sensing survey engineering Xinjiang Uygur Autonomous Region China
下载PDF
Moho depth inversion in the Tibetan Plateau from high-precision gravity data 被引量:2
12
作者 HuiYou He Jian Fang +3 位作者 HePing Sun DongMei Guo ZhiXin Xue Jing Hou 《Earth and Planetary Physics》 CAS CSCD 2023年第4期487-498,共12页
The Tibetan Plateau(TP)is the youngest orogenic belt resulting from a continental collision on the Earth.It is a natural laboratory for studying continental dynamics,such as continental convergence,plate subduction,an... The Tibetan Plateau(TP)is the youngest orogenic belt resulting from a continental collision on the Earth.It is a natural laboratory for studying continental dynamics,such as continental convergence,plate subduction,and plateau uplift.Investigating the deep structure of the TP has always been a popular issue in geological research.The Moho is the boundary between the crust and the mantle and therefore plays a crucial role in the Earth’s structure.Parameters such as depth and lateral variation,as well as the fine structure of the crust-mantle interface,reveal the lithospheric dynamics in the TP.Two methods are generally employed to study the Moho surface:seismic detection and gravity inversion.Seismic detection has the characteristic of high precision,but it is limited to a few cross-sectional lines and is quite costly.It is not suitable for and cannot be carried out over a large area of the TP.The Moho depth over a large area can be obtained through gravity inversion,but this method is affected by the nature of gravity data,and the accuracy of the inversion method is lower than that of seismic detection.In this work,a high-precision gravity field model was selected.The Parker-Oldenburg interface inversion method was used,within the constraints of seismic observations,and the Bott iteration method was introduced to enhance the inversion efficiency.The Moho depth in the TP was obtained with high precision,consistent with the seismic detection results.The research results showed that the shape of the Moho in the TP is complex and the variation range is large,reaching 60−80 km.In contrast with the adjacent area,a clear zone of sharp variation appears at the edge of the plateau.In the interior of the TP,the buried depth of the Moho is characterized by two depressions and two uplifts.To the south of the Yarlung Zangbo River,the Moho inclines to the north,and to the north,the Moho depresses downward,which was interpreted as the Indian plate subducting to the north below Tibet.The Moho depression on the north side of the Qiangtang block,reaching 72 km deep,may be a result of the southward subduction of the lithosphere.The Moho uplift of the Qiangtang block has the same strike as the Bangong−Nujiang suture zone,which may indicate that the area is compensated by a low-density and low-velocity mantle. 展开更多
关键词 gravity MOHO Tibetan Plateau SGG-UGM-2(2159-order high-precision gravity field model)
下载PDF
Comprehensive compensation method for the influence of disturbing gravity field on long-range rocket guidance computing
13
作者 Yansheng WU Zongqiang WANG Bing ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期408-418,共11页
With the improvement of the accuracy of the inertial system,the influence of the disturbing gravity field on the accuracy of long-range rocket has become increasingly prominent.However,in actual engineering,there are ... With the improvement of the accuracy of the inertial system,the influence of the disturbing gravity field on the accuracy of long-range rocket has become increasingly prominent.However,in actual engineering,there are problems of low accuracy and being time-consuming for disturbing gravity field compensation.In view of this,this paper proposes a set of online comprehensive solutions combining disturbing gravity reconstruction and stellar correction.According to the pre-launch binding parameters,the net function assignment method is used in the navigation system to calculate disturbing gravity in the boost phase online.In the guidance system,a closed-loop guidance online compensation method is proposed based on the state-space perturbation method for the disturbing gravity in the coast phase.At the same time,the vertical deflection can also be corrected by stellar guidance.The calculation results are simulated and verified under different circumstances.Simulation results show that the proposed online compensation algorithm has an accuracy improvement compared with the element compensation algorithm on ground.And the stellar guidance algorithm can further correct the impact deviation.The impact deviation after comprehensive compensation does not exceed 50 m,and the compensation percentage is greater than 65%. 展开更多
关键词 Disturbing gravity field Long-range rocket Online compensation Stellar guidance Vertical deflection
原文传递
Integrated gravity and magnetic study on patterns of petroleum basin occurrence in the China seas and adjacent areas 被引量:1
14
作者 Tao He Wanyin Wang +3 位作者 Zhizhao Bai Xingang Luo Jing Ma Yimi Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期201-214,共14页
The China seas and adjacent areas contain numerous petroleum basins.One of the main challenges for future oil and gas exploration is to identify the inherent patterns of petroleum basin distribution.The formation and ... The China seas and adjacent areas contain numerous petroleum basins.One of the main challenges for future oil and gas exploration is to identify the inherent patterns of petroleum basin distribution.The formation and evolution of petroleum basins along with the migration and accumulation of oil and gas are often closely related to the tectonic environment.The gravity and magnetic fields with high lateral resolution and wide coverage provide important data for regional tectonic research.Based on the gravity data in the Global Satellite Gravity Anomaly Database(V31.1)and magnetic data from the Earth Magnetic Anomaly Grid(2-arc-minute resolution)(V2),this study uses integrated gravity and magnetic field technique to obtain integrated gravity and magnetic field result for the China seas and adjacent areas,and then adopts the normalized vertical derivative of the total horizontal derivative technique to conduct partition.Finally,it identifies the relationship between the partition characteristics and tectonics as well as the patterns of petroleum basin occurrence.The research shows that the partition of gravity and magnetic field integrated result has a good correlation with the Neo-Cathaysian tectonic system and tectonic units.The petroleum basins are characterized according to three blocks arranged from north to south and four zones arranged from east to west.The north-south block structure causes the uneven distribution of oil and gas resources in the mainland area and the differences in the hydrocarbon-bearing strata.Petroleum basins are more abundant in the north than in the south.The ages of the main oil-and gas-bearing strata are“Paleozoic–Mesozoic,Paleozoic–Mesozoic–Cenozoic,and Paleozoic–Mesozoic”,in order from north to south.The difference in the overall type of oil and gas resources in all basins is controlled by the east–west zonation.From east to west,the oil and gas resource type exhibits a wave-like pattern of“oil and gas,gas,oil and gas,gas”.The vertical distribution is characterized by an upper oil(Mesozoic–Cenozoic)and lower gas(Mesozoic–Paleozoic)structure.Within the study area,the Paleozoic marine strata should be the main strata of future natural gas exploration. 展开更多
关键词 China seas petroleum basins integrated gravity and magnetic field technique partition characteristics three blocks four zones
下载PDF
Characteristics of gravity and magnetic fields and deep structural responses in the southern part of the Kyushu-Palau Ridge
15
作者 Zhen Lin Wen-chao Lü +7 位作者 Zi-ying Xu Peng-bo Qin Hui-qiang Yao Xiao Xiao Xin-he Zhang Chu-peng Yang Xiang-yu Zhang Jia-le Chen 《China Geology》 2021年第4期553-570,共18页
The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is... The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is critical for the research on the tectonic evolution of marginal seas in the Western Pacific Ocean.However,only few studies have been completed on the southern part,and the geophysical fields and deep structures in this part are not well understood.Given this,this study finely depicts the characteristics of the gravity and magnetic anomalies and extracts information on deep structures in the southern part of the KPR based on the gravity and magnetic data obtained from the 11th expedition of the deep-sea geological survey of the Western Pacific Ocean conducted by the Guangzhou Marine Geological Survey,China Geological Survey using the R/V Haiyangdizhi 6.Furthermore,with the data collected on the water depth,sediment thickness,and multichannel seismic transects as constraints,a 3D density model and Moho depths of the study area were obtained using 3D density inversion.The results are as follows.(1)The gravity and magnetic anomalies in the study area show distinct zoning and segmentation.In detail,the gravity and magnetic anomalies to the south of 11°N of the KPR transition from high-amplitude continuous linear positive anomalies into low-amplitude intermittent linear positive anomalies.In contrast,the gravity and magnetic anomalies to the north of 11°N of the KPR are discontinuous and show alternating positive and negative anomalies.These anomalies can be divided into four sections,of which the separation points correspond well to the locations of deep faults,thus,revealing different field-source attributes and tectonic genesis of the KPR.(2)The Moho depth in the basins in the study area is 6-12 km.The Moho depth in the southern part of KPR show segmentation.Specifically,the depth is 10‒12 km to the north of 11°N,12‒14 km from 9.5°N to 11°N,14-16 km from 8.5°N to 9.5°N,and 16‒25 km in the Palau Islands.(3)The KPR is a remnant intra-oceanic arc with the oceanic-crust basement.which shows noticeably discontinuous from north to south in geological structure and is intersected by NEE-trending lithospheric-scale deep faults.With large and deep faults F3 and F1(the Mindanao fault)as boundaries overall,the southern part of the KPR can be divided into three zones.In detail,the portion to the south of 8.5°N(F3)is a tectonically active zone,the KPR portion between 8.5°N and 11°N is a tectonically active transition zone,and the portion to the north of 11°N is a tectonically inactive zone.(4)The oceanic crust in the KPR is slightly thicker than that in the basins on both sides of the ridge,and it is inferred that the KPR formed from the thickening of the oceanic crust induced by the upwelling of deep magma in the process of rifting of remnant arcs during the Middle Oligocene.In addition,it is inferred that the thick oceanic crust under the Palau Islands is related to the constant upwelling of deep magma induced by the continuous northwestward subduction of the Caroline Plate toward the Palau Trench since the Late Oligocene.This study provides a scientific basis for systematically understanding the crustal attributes,deep structures,and evolution of the KPR. 展开更多
关键词 Kyushu-Palau Ridge(KPR) Characteristics of gravity and magnetic fields Mindanao fault Moho depth Crust attribute Philippine Sea Plate Marine scientific survey
下载PDF
Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity
16
作者 S.M.SAID 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第5期819-832,共14页
The basic equations for a homogeneous and isotropic thermo-magnetoviscoelastic medium are formulated based on three different theories, i.e., the GreenLindsay(G-L) theory, the coupled(CD) theory, and the Lord-Shulman(... The basic equations for a homogeneous and isotropic thermo-magnetoviscoelastic medium are formulated based on three different theories, i.e., the GreenLindsay(G-L) theory, the coupled(CD) theory, and the Lord-Shulman(L-S) theory. The variable thermal conductivity is considered as a linear function of the temperature. Using suitable non-dimensional variables, these basic equations are solved via the eigenvalue approach. The medium is initially assumed to be stress-free and subject to a thermal shock.The numerical results reveal that the viscosity, the two-temperature parameter, the gravity term, and the magnetic field significantly influence the distribution of the physical quantities of the thermoelastic medium. 展开更多
关键词 eigenvalue approach variable thermal conductivity thermo-viscoelastic gravity field
下载PDF
The construction of high precision geostrophic currents based on new gravity models of GOCE and satellite altimetry data
17
作者 Wenyan Sui Junru Guo +10 位作者 Jun Song Zhiliang Liu Meng Wang Xibin Li Yanzhao Fu Yongquan Li Yu Cai Linhui Wang Lingli Li Xiaofang Guo Wenting Zuo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第3期142-152,共11页
The new gravity field models of gravity field and steady-state ocean circulation explorer(GOCE),TIM_R6 and DIR_R6,were released by the European Space Agency(ESA)in June 2019.The sixth generation of gravity models have... The new gravity field models of gravity field and steady-state ocean circulation explorer(GOCE),TIM_R6 and DIR_R6,were released by the European Space Agency(ESA)in June 2019.The sixth generation of gravity models have the highest possible signal and lowest error levels compared with other GOCE-only gravity models,and the accuracy is significantly improved.This is an opportunity to build high precision geostrophic currents.The mean dynamic topography and geostrophic currents have been calculated by the 5th(TIM_R5 and DIR_R5),6th(TIM_R6 and DIR_R6)release of GOCE gravity field models and ITSG-Grace2018 of GRACE gravity field model in this study.By comparison with the drifter results,the optimal filtering lengths of them have been obtained(for DIR_R5,DIR_R6,TIM_R5 and TIM_R6 models are 1°and for ITSG-Grace2018 model is 1.1°).The filtered results show that the geostrophic currents obtained by the GOCE gravity field models can better reflect detailed characteristics of ocean currents.The total geostrophic speed based on the TIM_R6 model is similar to the result of the DIR_R6 model with standard deviation(STD)of 0.320 m/s and 0.321 m/s,respectively.The STD of the total velocities are 0.333 m/s and 0.325 m/s for DIR_R5 and TIM_R5.When compared with ITSG-Grace2018 results,the STD(0.344 m/s)of total geostrophic speeds is larger than GOCE results,and the accuracy of geostrophic currents obtained by ITSG-Grace2018 is lower.And the absolute errors are mainly distributed in the areas with faster speeds,such as the Antarctic circumpolar circulation,equatorial region,Kuroshio and Gulf Stream areas.After the remove-restore technique was applied to TIM_R6 MDT,the STD of total geostrophic speeds dropped to 0.162 m/s. 展开更多
关键词 GOCE gravity field model mean dynamic topography geostrophic current
下载PDF
Spatio-temporal variability of terrestrial water storage in the Yangtze River Basin: Response to climate changes
18
作者 Yaoguo Wang Zhaoyang Sun +2 位作者 Qiwen Wu Jun Fang Wei Jia 《Geodesy and Geodynamics》 EI CSCD 2023年第3期201-211,共11页
The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distributi... The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distribution of water resources is severely unbalanced.Therefore,the detailed analysis of spatio-temporal water mass changes is helpful to the development and rational utilization of water resources in the YRB.In this study,the variation of terrestrial water storage(TWS)is monitored by Gravity Recovery and Climate Experiment(GRACE)satellite gravity.We find that the University of Texas Center for Space Research(CSR)solution shows a notable difference with the Jet Propulsion Laboratory(JPL)in space,but the general trend is consistent in time series.Then the GRACE inferred water mass variation reveals that the YRB has experienced several drought and flood events over the past two decades.Global Land Data Assimilation System(GLDAS)results are similar to GRACE.Furthermore,the overall precipitation trend tends to be stable in space,but it is greatly influenced by the strong El Nino-~Southern Oscillation(ENSO),which is the response to global climate change.The upper YRB is less affected by ENSO and shows a more stable water storage signal with respect to the lower YRB. 展开更多
关键词 Yangtze river basin Terrestrial water storage GRACE Time-varying gravity field
原文传递
Chinese Gravimetry Augment and Mass Change Exploring Mission Status and Future
19
作者 Yun XIAO Yuanxi YANG +2 位作者 Zongpeng PAN Yunlong WU Zehua GUO 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第3期67-75,共9页
The satellite gravimetry technology effectively recovers the global Earth’s gravity field.Since 2000s,HL-SST satellite CHAMP,LL-SST satellite GRACE,Gravity Gradient Measurement(GGM)satellite GOCE have been launched s... The satellite gravimetry technology effectively recovers the global Earth’s gravity field.Since 2000s,HL-SST satellite CHAMP,LL-SST satellite GRACE,Gravity Gradient Measurement(GGM)satellite GOCE have been launched successfully,producing some Earth’s gravity models solely from satellites data.However,the space and time resolution of the Earth’s gravity fields do not adequately satisfy scientific objectives.The main reason is that the gravimetry satellites are not enough and observation data insufficient.The paper outlines the current and future status of Chinese gravity satellite missions.The Chinese gravimetry satellite system,named Chinese Gravimetry augment and Mass change exploring mission(ChiGaM),successfully launched in Dec.2021 after four years of production and over a year of calibration and valiation.The accelerometer,K-band ranging system and the three stellar sensors,among others,were precisely calibrated and trimmed.The satellite mass center was determined and coordinated with the proof center of accelerometer with an accuracy 100μm.The inter-satellite ranging system and BDS/GPS receiver operate together seamlessly.The range and range rate noise is less than 3μm/Hz^(1/2) and 1μm/s/Hz^(1/2),respectively,in band of 0.025~0.1 Hz.The electrostatic suspension accelerometer is working well.Its high-sensitive axis noise level is 3×10^(-10) m/s^(2)/Hz^(1/2)near the frequency 0.1 Hz,and 1×10^(-9) m/s^(2)/Hz^(1/2) for the less-sensitive axis.Meanwhile the BDS/GPS receiver is used to achieve data for precise orbit determination,yielding an orbit result with accuracy better than 2 cm.When compared with KBR observations,the RMS of the bias is less than 1 mm.Besides above mission,next gravimetric satellite is being developed now.TQ-2 mission is designed as a totally experimental satellite for gravitational wave detection at low Earth orbit,which can detect the Earth’s gravity field simultaneously.The Bender-type mission is considered the most promising configuration for TQ-2 and consists of two polar satellites and two inclined satellites.Due to the extra observations at the east-west direction derived from the inclined satellite pair,significant improvements has been made in detecting temporal signals with higher accuracy and spatial-temporal resolution.To achieve the scientific goal,the ACC MBW can shift from 0.001~0.1 Hz to 0.004~0.1 Hz for ACC,and the LRI MBW can shift from 0.01~1 Hz to 0.1~1 Hz.For future research,a gravimetric potential survey using cold-atomic-clock based on the general relativity theory,cold atom gradiometer should be pursued.Gravimetric technologies should be mined and researched,and the gravimetry satellite constellation should be developed,so as to improve the time resolution and space resolution for meeting the requirements of geophysics,geodesy,earthquake,water resources environment,oceanography,etc. 展开更多
关键词 satellite gravimetry the Earth’s gravity field gravity GRACE GRACE-FO GOCE
下载PDF
Research Progress in Surface and Marine Gravimetry
20
作者 Heping SUN Lifeng BAO +13 位作者 Shi CHEN Xiaoming CUI Qianqian LI Lulu JIA Jianqiao XU Jiangcun ZHOU Minzhang HU Yiqing ZHU Xiaodong CHEN Lin WU Jiancheng HAN Honglei LI Miaomiao ZHANG Linhai WANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第3期19-32,共14页
Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic p... Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic process inside the Earth.Over the years,a variety of technical means have been used to detect the Earth’s gravity field and supported numerous studies on the global change,resource detection,geological structure movement,water resources change and other related fields of research.Here is part of the progress in surface and marine gravimetry obtained by Chinese geodesy scientists from 2019 to 2023 from the following aspects,including:①Continuous gravity network in Chinese mainland;②Application of superconducting gravity measurement;③Network adjustment for continental-scale gravity survey campaign and data quality control;④Regional time-variable gravity field and its application;⑤Research progress on novel technologies for gravity inversion;⑥Research progress on marine gravity field determination;⑦Application research on marine gravity field. 展开更多
关键词 surface and marine gravimetry time-variable gravity field GEODYNAMICS gravity inversion
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部