Green manure use in China has declined rapidly since the 1980 s with the extensive use of chemical fertilizers.The deterioration of field environments and the demand for green agricultural products have resulted in mo...Green manure use in China has declined rapidly since the 1980 s with the extensive use of chemical fertilizers.The deterioration of field environments and the demand for green agricultural products have resulted in more attention to green manure.Human intervention and policy-oriented behaviors likely have large impacts on promoting green manure planting.However,little information is available regarding on where,at what rates,and in which ways(i.e.,intercropping green manure in orchards or rotating green manure in cropland) to develop green manure and what benefits could be gained by incorporating green manure in fields at the county scale.This paper presents the conversion of land use and its effects at small region extent(CLUE-S) model,which is specifically developed for the simulation of land use changes originally,to predict spatial distribution of green manure in cropland and orchards in 2020 in Pinggu District located in Beijing,China.Four types of land use for planting or not planting green manure were classified and the future land use dynamics(mainly croplands and orchards) were considered in the prediction.Two scenarios were used to predict the spatial distribution of green manure based on data from 2011:The promotion of green manure planting in orchards(scenario 1) and the promotion of simultaneous green manure planting in orchards and croplands(scenario 2).The predictions were generally accurate based on the receiver operating characteristic(ROC) and Kappa indices,which validated the effectiveness of the CLUE-S model in the prediction.In addition,the spatial distribution of the green manure was acquired,which indicated that green manure mainly located in the orchards of the middle and southern regions of Dahuashan,the western and southern regions of Wangxinzhuang,the middle region of Shandongzhuang,the eastern region of Pinggu and the middle region of Xiagezhuang under scenario 1.Green manure planting under scenario 2 occurred in orchards in the middle region of Wangxinzhuang,and croplands in most regions of Daxingzhuang,southern Pinggu,northern Xiagezhuang and most of Mafang.The spatially explicit results allowed for the assessment of the benefits of these changes based on different economic and ecological indicators.The economic and ecological gains of scenarios 1 and 2 were 175691 900 and143000 300 CNY,respectively,which indicated that the first scenario was more beneficial for promoting the same area of green manure.These results can facilitate policies of promoting green manure and guide the extensive use of green manure in local agricultural production in suitable ways.展开更多
Exploring the scale-effect of different land use types on the distribution pattern of urban park green space(PGS)at multiple grid scales would inform rational allocation and efficient collaborative construction of urb...Exploring the scale-effect of different land use types on the distribution pattern of urban park green space(PGS)at multiple grid scales would inform rational allocation and efficient collaborative construction of urban development land at different scales.Selecting 300-m,500-m,1,000-m,and 2,000-m grid scales,the research employed Create Fishnet tool in ArcGIS and Geodetector to construct a scale-effect analysis framework that revealed the scale-effects of different land use types on the distribution pattern of PGS at multiple grid scales in the main urban area of Nanjing,China in 2006,2012,and 2017.Main research results are:1)the overall distribution pattern of PGS showed the evolution characteristics from polarization to advancing quality and efficiency,while the trend gradually weakened with the increase of grid scale;2)the scale-effect of other land use types on PGS increasingly enhanced-the larger the grid scale,the more obvious the synergistic or compressive effect;3)the interactive scaleeffects of different land use types gradually enhanced-the larger the grid scale,the more significant the overall factor interaction;and 4)at the 300-m grid scale,the major interaction factors were residential,transportation,industrial/manufacturing,water area,and administration/public services,which gradually changed to residential,water area,and administration/public services up to the 2,000-m grid scale.The findings of this paper are expected to deepen the theory of the coupling between PGS and other land use types,as well as provide scientific support and a basis for efficient allocation,spatial layout optimization,and sustainable development of urban spaces.展开更多
An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud(DGC)systems for low response time and high cost-effectiveness in recent years...An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud(DGC)systems for low response time and high cost-effectiveness in recent years.Task scheduling and resource allocation in DGCs have gained more attention in both academia and industry as they are costly to manage because of high energy consumption.Many factors in DGCs,e.g.,prices of power grid,and the amount of green energy express strong spatial variations.The dramatic increase of arriving tasks brings a big challenge to minimize the energy cost of a DGC provider in a market where above factors all possess spatial variations.This work adopts a G/G/1 queuing system to analyze the performance of servers in DGCs.Based on it,a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based bees algorithm(SBA)to find SBA can minimize the energy cost of a DGC provider by optimally allocating tasks of heterogeneous applications among multiple DGCs,and specifying the running speed of each server and the number of powered-on servers in each GC while strictly meeting response time limits of tasks of all applications.Realistic databased experimental results prove that SBA achieves lower energy cost than several benchmark scheduling methods do.展开更多
This study explores the impact of street pattern measurements on urban heat islands(UHI)in the arid climate of Mashhad,Iran.The Landsat-8 top-of-the-atmosphere(TOA)brightness images from 2013 to 2021,average values of...This study explores the impact of street pattern measurements on urban heat islands(UHI)in the arid climate of Mashhad,Iran.The Landsat-8 top-of-the-atmosphere(TOA)brightness images from 2013 to 2021,average values of normalized difference vegetation index(NDvI)and land surface temperature(LST)were calculated.Street pattern measurements,including closeness-centrality,straightness,and street orientation,were employed to analyse the patterns in each district.The results indicated that districts with higher straightness and lower closeness-centrality exhibit,cooler surface temperatures.Strong correlations were observed between LST and NDVl,straightness,and local closeness-centrality.The research highlighted the importance of considering street network measurements in long-term urban planning and design to mitigate the UHI effect in arid regions.A moderate grid street pattern with a reasonable distribution of green spaces throughout the region is suggested to reduce surface temperatures sustainably.Street pattern indexes,such as straightness and local closeness-centrality,are identified as significant factors in urban design to mitigate UHl.These findings have implications for urban planners,who can use this information to create street network patterns with lower UHI effects by reducing local closeness-centrality and increasing straightness.展开更多
The design of urban squares in the city of Mendoza,Argentina,is based on aesthetic and landscaping criteria without consider strategies to enhance the benefits that green areas generate on the city's micrometeorol...The design of urban squares in the city of Mendoza,Argentina,is based on aesthetic and landscaping criteria without consider strategies to enhance the benefits that green areas generate on the city's micrometeorological conditions.The paper aims to evaluate different design alternatives with the purpose to determine which proportion and distribution of green and sealed areas contributes to achieve the best conditions in terms of thermal behavior and comfort.ENVI-met software was used to simulate thermal conditions over twenty three scenarios,and COMFA method was employed to determine comfort in the scenarios that show the best thermal behaviour and are representative of current design trends.The results show that the most effective scheme for the memorial squares rehabilitation is the one concentrating 60%of woodlot around a sealed center with an area that does not exceed 20%the square surface.Another effective alternative is the one concentrating 60%of woodlot at the center of the area.These findings highlight the importance of an adequate relation between proportion and distribution of woodlot/sealed areas to improve thermal performance and comfort conditions of open spaces.展开更多
基金supported by the Special Fund for Agroscientific Research in the Public Interest,China(20110300501-01)the Special Fund for First-Class University (4572-18101510)
文摘Green manure use in China has declined rapidly since the 1980 s with the extensive use of chemical fertilizers.The deterioration of field environments and the demand for green agricultural products have resulted in more attention to green manure.Human intervention and policy-oriented behaviors likely have large impacts on promoting green manure planting.However,little information is available regarding on where,at what rates,and in which ways(i.e.,intercropping green manure in orchards or rotating green manure in cropland) to develop green manure and what benefits could be gained by incorporating green manure in fields at the county scale.This paper presents the conversion of land use and its effects at small region extent(CLUE-S) model,which is specifically developed for the simulation of land use changes originally,to predict spatial distribution of green manure in cropland and orchards in 2020 in Pinggu District located in Beijing,China.Four types of land use for planting or not planting green manure were classified and the future land use dynamics(mainly croplands and orchards) were considered in the prediction.Two scenarios were used to predict the spatial distribution of green manure based on data from 2011:The promotion of green manure planting in orchards(scenario 1) and the promotion of simultaneous green manure planting in orchards and croplands(scenario 2).The predictions were generally accurate based on the receiver operating characteristic(ROC) and Kappa indices,which validated the effectiveness of the CLUE-S model in the prediction.In addition,the spatial distribution of the green manure was acquired,which indicated that green manure mainly located in the orchards of the middle and southern regions of Dahuashan,the western and southern regions of Wangxinzhuang,the middle region of Shandongzhuang,the eastern region of Pinggu and the middle region of Xiagezhuang under scenario 1.Green manure planting under scenario 2 occurred in orchards in the middle region of Wangxinzhuang,and croplands in most regions of Daxingzhuang,southern Pinggu,northern Xiagezhuang and most of Mafang.The spatially explicit results allowed for the assessment of the benefits of these changes based on different economic and ecological indicators.The economic and ecological gains of scenarios 1 and 2 were 175691 900 and143000 300 CNY,respectively,which indicated that the first scenario was more beneficial for promoting the same area of green manure.These results can facilitate policies of promoting green manure and guide the extensive use of green manure in local agricultural production in suitable ways.
文摘Exploring the scale-effect of different land use types on the distribution pattern of urban park green space(PGS)at multiple grid scales would inform rational allocation and efficient collaborative construction of urban development land at different scales.Selecting 300-m,500-m,1,000-m,and 2,000-m grid scales,the research employed Create Fishnet tool in ArcGIS and Geodetector to construct a scale-effect analysis framework that revealed the scale-effects of different land use types on the distribution pattern of PGS at multiple grid scales in the main urban area of Nanjing,China in 2006,2012,and 2017.Main research results are:1)the overall distribution pattern of PGS showed the evolution characteristics from polarization to advancing quality and efficiency,while the trend gradually weakened with the increase of grid scale;2)the scale-effect of other land use types on PGS increasingly enhanced-the larger the grid scale,the more obvious the synergistic or compressive effect;3)the interactive scaleeffects of different land use types gradually enhanced-the larger the grid scale,the more significant the overall factor interaction;and 4)at the 300-m grid scale,the major interaction factors were residential,transportation,industrial/manufacturing,water area,and administration/public services,which gradually changed to residential,water area,and administration/public services up to the 2,000-m grid scale.The findings of this paper are expected to deepen the theory of the coupling between PGS and other land use types,as well as provide scientific support and a basis for efficient allocation,spatial layout optimization,and sustainable development of urban spaces.
基金supported in part by the National Natural Science Foundation of China(61802015,61703011)the Major Science and Technology Program for Water Pollution Control and Treatment of China(2018ZX07111005)+1 种基金the National Defense Pre-Research Foundation of China(41401020401,41401050102)the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah(D-422-135-1441)。
文摘An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud(DGC)systems for low response time and high cost-effectiveness in recent years.Task scheduling and resource allocation in DGCs have gained more attention in both academia and industry as they are costly to manage because of high energy consumption.Many factors in DGCs,e.g.,prices of power grid,and the amount of green energy express strong spatial variations.The dramatic increase of arriving tasks brings a big challenge to minimize the energy cost of a DGC provider in a market where above factors all possess spatial variations.This work adopts a G/G/1 queuing system to analyze the performance of servers in DGCs.Based on it,a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based bees algorithm(SBA)to find SBA can minimize the energy cost of a DGC provider by optimally allocating tasks of heterogeneous applications among multiple DGCs,and specifying the running speed of each server and the number of powered-on servers in each GC while strictly meeting response time limits of tasks of all applications.Realistic databased experimental results prove that SBA achieves lower energy cost than several benchmark scheduling methods do.
文摘This study explores the impact of street pattern measurements on urban heat islands(UHI)in the arid climate of Mashhad,Iran.The Landsat-8 top-of-the-atmosphere(TOA)brightness images from 2013 to 2021,average values of normalized difference vegetation index(NDvI)and land surface temperature(LST)were calculated.Street pattern measurements,including closeness-centrality,straightness,and street orientation,were employed to analyse the patterns in each district.The results indicated that districts with higher straightness and lower closeness-centrality exhibit,cooler surface temperatures.Strong correlations were observed between LST and NDVl,straightness,and local closeness-centrality.The research highlighted the importance of considering street network measurements in long-term urban planning and design to mitigate the UHI effect in arid regions.A moderate grid street pattern with a reasonable distribution of green spaces throughout the region is suggested to reduce surface temperatures sustainably.Street pattern indexes,such as straightness and local closeness-centrality,are identified as significant factors in urban design to mitigate UHl.These findings have implications for urban planners,who can use this information to create street network patterns with lower UHI effects by reducing local closeness-centrality and increasing straightness.
基金supported by CONICET(Consejo Nacionalde investigation Cientifica y Tecnologica)APCyT(AgenciaNacional de Promotion Cientifica y Tecnologica).
文摘The design of urban squares in the city of Mendoza,Argentina,is based on aesthetic and landscaping criteria without consider strategies to enhance the benefits that green areas generate on the city's micrometeorological conditions.The paper aims to evaluate different design alternatives with the purpose to determine which proportion and distribution of green and sealed areas contributes to achieve the best conditions in terms of thermal behavior and comfort.ENVI-met software was used to simulate thermal conditions over twenty three scenarios,and COMFA method was employed to determine comfort in the scenarios that show the best thermal behaviour and are representative of current design trends.The results show that the most effective scheme for the memorial squares rehabilitation is the one concentrating 60%of woodlot around a sealed center with an area that does not exceed 20%the square surface.Another effective alternative is the one concentrating 60%of woodlot at the center of the area.These findings highlight the importance of an adequate relation between proportion and distribution of woodlot/sealed areas to improve thermal performance and comfort conditions of open spaces.