With the advancement of technology,gas shales have become one of the most prominent energy sources all over the world.Therefore,estimating the amount of adsorbed gas in shale resources is necessary for the technical a...With the advancement of technology,gas shales have become one of the most prominent energy sources all over the world.Therefore,estimating the amount of adsorbed gas in shale resources is necessary for the technical and economic foresight of the production operations.This paper presents a novel machine learning method called grey wolf optimizer support vector machine(GWO-SVM)to predict adsorbed gas.For this purpose,a data set containing temperature,pressure,total organic carbon(TOC),and humidity has been collected from several sources,and the GWO-SVM model was created based on it.The results show that this model has R-squared and root mean square error equal to 0.982 and 0.08,respectively.Also,the results ensure that the proposed model gives an excellent prediction of the amount of adsorbed gas compared to previously proposed models.Besides,according to the sensitivity analysis,among the input parameters,humidity has the highest effect on gas adsorption.展开更多
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec...In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.展开更多
Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ens...Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital transactions.This research proposes a novel methodology through three stages.Firstly,Synthetic Minority Oversampling Technique(SMOTE)is applied to get balanced data.Secondly,SMOTE is fed to the nature-inspired Meta Heuristic(MH)algorithm,namely Binary Harris Hawks Optimization(BinHHO),Binary Aquila Optimization(BAO),and Binary Grey Wolf Optimization(BGWO),for feature selection.BinHHO has performed well when compared with the other two.Thirdly,features from BinHHO are fed to the supervised learning algorithms to classify the transactions such as fraud and non-fraud.The efficiency of BinHHO is analyzed with other popular MH algorithms.The BinHHO has achieved the highest accuracy of 99.95%and demonstrates amore significant positive effect on the performance of the proposed model.展开更多
针对在刀具磨损实时监测过程中受外界噪声影响而导致预测准确度较低问题,提出一种基于皮尔逊相关系数(Pearson Correlation Coefficient,PCC)和灰狼优化支持向量机(Grey Wolf Optimization Support Vector Machine,GWO-SVM)的刀具磨损...针对在刀具磨损实时监测过程中受外界噪声影响而导致预测准确度较低问题,提出一种基于皮尔逊相关系数(Pearson Correlation Coefficient,PCC)和灰狼优化支持向量机(Grey Wolf Optimization Support Vector Machine,GWO-SVM)的刀具磨损量预测模型。该模型采用时域、频域和时频联合域上的特征提取方法,能有效捕捉刀具磨损过程中不同方面的信息;通过PCC优化方法筛选与刀具磨损高度相关的特征数据,提高模型的特征提取能力;利用灰狼算法获取搜索狼群中具有最佳适应度值的位置,即对应的SVM惩罚因子C和核函数参数σ作为SVM的最优参数进行构建和训练,提高预测精度。实验结果表明,PCC-GWO-SVM模型在球头铣刀磨损预测任务中的均方误差MSE为0.0181mm^(2),平均相对误差MAPE为0.187%,决定系数R^(2)为0.9827,均优于预测模型GA-SVM和BES-LSSVM,验证了该模型的有效性和可行性。展开更多
为了提高氧化锌避雷器的故障检测精度,文章利用收敛因子非线性变化和莱维飞行策略对灰狼(Grey Wolf Optimization, GWO)算法进行改进,得到收敛性能更好的改进灰狼(Improved Grey Wolf Optimization, IGWO)算法,再采用IGWO算法对支持向量...为了提高氧化锌避雷器的故障检测精度,文章利用收敛因子非线性变化和莱维飞行策略对灰狼(Grey Wolf Optimization, GWO)算法进行改进,得到收敛性能更好的改进灰狼(Improved Grey Wolf Optimization, IGWO)算法,再采用IGWO算法对支持向量机(Support Vector Machine, SVM)的惩罚系数和核带宽进行优化,建立基于IGWO-SVM的避雷器故障检测模型。利用氧化锌避雷器监测数据进行故障检测实例分析,将IGWO-SVM模型的故障检测结果与现有避雷器故障检测模型的检测结果对比,结果表明,IGWO-SVM模型的检测精度更高,验证了该模型在氧化锌避雷器故障检测方面的优越性。展开更多
This study presents an innovative approach to calculating the failure probability of slopes by incorporating fuzzylimit-state functions,a method that significantly enhances the accuracy and efficiency of slope stabili...This study presents an innovative approach to calculating the failure probability of slopes by incorporating fuzzylimit-state functions,a method that significantly enhances the accuracy and efficiency of slope stability analysis.Unlike traditional probabilistic techniques,this approach utilizes a least squares support vector machine(LSSVM)optimized with a grey wolf optimizer(GWO)and K-fold cross-validation(CV)to approximate the limit-statefunction,thus reducing computational complexity.The novelty of this work lies in its application to one-dimensional(1D),two-dimensional(2D),and three-dimensional(3D)slope models,demonstrating its versatility andhigh precision.The proposed method consistently achieves error margins within 3%of Monte Carlo simulation(MCS)results,while substantially reducing computation time,particularly for 2D and 3D models.This makes theapproach highly practical for real-world engineering applications.Furthermore,by applying fuzzy mathematics tohandle uncertainties in geotechnical properties,the method offers a more realistic and comprehensive understandingof slope stability.As water is the main factor influencing the stability of slopes,this aspect is investigatedby calculating the phreatic line after the change in water level.Relevant examples are used to show that the failureprobability of a slope under water wading condition can increase by more than 20%(increase rates in 1D,2D and3D conditions being 25%,27%and 31%,respectively)compared with the natural condition.The influence ofdiverse fuzzy membership functions—linear,normal,and Cauchy—on failure probability is also considered.Thisresearch not only provides a strategy for better calculation of the slope failure probability but also pioneers theintegration of computational intelligence,fuzzy logic and fluid-dynamics in geotechnical engineering,presentingan innovative and efficient tool for slope stability analysis.展开更多
文摘With the advancement of technology,gas shales have become one of the most prominent energy sources all over the world.Therefore,estimating the amount of adsorbed gas in shale resources is necessary for the technical and economic foresight of the production operations.This paper presents a novel machine learning method called grey wolf optimizer support vector machine(GWO-SVM)to predict adsorbed gas.For this purpose,a data set containing temperature,pressure,total organic carbon(TOC),and humidity has been collected from several sources,and the GWO-SVM model was created based on it.The results show that this model has R-squared and root mean square error equal to 0.982 and 0.08,respectively.Also,the results ensure that the proposed model gives an excellent prediction of the amount of adsorbed gas compared to previously proposed models.Besides,according to the sensitivity analysis,among the input parameters,humidity has the highest effect on gas adsorption.
基金the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-014-3).
文摘In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.
文摘Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital transactions.This research proposes a novel methodology through three stages.Firstly,Synthetic Minority Oversampling Technique(SMOTE)is applied to get balanced data.Secondly,SMOTE is fed to the nature-inspired Meta Heuristic(MH)algorithm,namely Binary Harris Hawks Optimization(BinHHO),Binary Aquila Optimization(BAO),and Binary Grey Wolf Optimization(BGWO),for feature selection.BinHHO has performed well when compared with the other two.Thirdly,features from BinHHO are fed to the supervised learning algorithms to classify the transactions such as fraud and non-fraud.The efficiency of BinHHO is analyzed with other popular MH algorithms.The BinHHO has achieved the highest accuracy of 99.95%and demonstrates amore significant positive effect on the performance of the proposed model.
文摘针对在刀具磨损实时监测过程中受外界噪声影响而导致预测准确度较低问题,提出一种基于皮尔逊相关系数(Pearson Correlation Coefficient,PCC)和灰狼优化支持向量机(Grey Wolf Optimization Support Vector Machine,GWO-SVM)的刀具磨损量预测模型。该模型采用时域、频域和时频联合域上的特征提取方法,能有效捕捉刀具磨损过程中不同方面的信息;通过PCC优化方法筛选与刀具磨损高度相关的特征数据,提高模型的特征提取能力;利用灰狼算法获取搜索狼群中具有最佳适应度值的位置,即对应的SVM惩罚因子C和核函数参数σ作为SVM的最优参数进行构建和训练,提高预测精度。实验结果表明,PCC-GWO-SVM模型在球头铣刀磨损预测任务中的均方误差MSE为0.0181mm^(2),平均相对误差MAPE为0.187%,决定系数R^(2)为0.9827,均优于预测模型GA-SVM和BES-LSSVM,验证了该模型的有效性和可行性。
基金Ministry of Education,Center for Scientific Research and Development of Higher Education Institutions“Innovative Application of Virtual Simulation Technology in Vocational Education Teaching”Special Project,Project No.ZJXF2022110.
文摘This study presents an innovative approach to calculating the failure probability of slopes by incorporating fuzzylimit-state functions,a method that significantly enhances the accuracy and efficiency of slope stability analysis.Unlike traditional probabilistic techniques,this approach utilizes a least squares support vector machine(LSSVM)optimized with a grey wolf optimizer(GWO)and K-fold cross-validation(CV)to approximate the limit-statefunction,thus reducing computational complexity.The novelty of this work lies in its application to one-dimensional(1D),two-dimensional(2D),and three-dimensional(3D)slope models,demonstrating its versatility andhigh precision.The proposed method consistently achieves error margins within 3%of Monte Carlo simulation(MCS)results,while substantially reducing computation time,particularly for 2D and 3D models.This makes theapproach highly practical for real-world engineering applications.Furthermore,by applying fuzzy mathematics tohandle uncertainties in geotechnical properties,the method offers a more realistic and comprehensive understandingof slope stability.As water is the main factor influencing the stability of slopes,this aspect is investigatedby calculating the phreatic line after the change in water level.Relevant examples are used to show that the failureprobability of a slope under water wading condition can increase by more than 20%(increase rates in 1D,2D and3D conditions being 25%,27%and 31%,respectively)compared with the natural condition.The influence ofdiverse fuzzy membership functions—linear,normal,and Cauchy—on failure probability is also considered.Thisresearch not only provides a strategy for better calculation of the slope failure probability but also pioneers theintegration of computational intelligence,fuzzy logic and fluid-dynamics in geotechnical engineering,presentingan innovative and efficient tool for slope stability analysis.