In current research on soft grippers,pneumatically actuated soft grippers are generally fabricated using fully soft materials,which have the advantage of flexibility as well as the disadvantages of a small gripping fo...In current research on soft grippers,pneumatically actuated soft grippers are generally fabricated using fully soft materials,which have the advantage of flexibility as well as the disadvantages of a small gripping force and slow response speed.To improve these characteristics,a novel pneumatic soft gripper with a jointed endoskeleton structure(E-Gripper)is developed,in which the muscle actuating function has been separated from the force bearing function.The soft action of an E-Gripper finger is performed by some air chambers surrounded by multilayer rubber embedded in the restraining fiber.The gripping force is borne and transferred by the rigid endoskeleton within the E-Gripper finger Thus,the gripping force and action response speed can be increased while the flexibility is maintained.Through experiments,the bending angle of each finger segment,response time,and gripping force of the E-Gripper have been measured,which provides a basis for designing and controlling the soft gripper The test results have shown that the maximum gripping force of the E-Gripper can be 35 N,which is three times greater than that of a fully soft gripper(FS-Gripper)of the same size.At the maximum charging pressure of 150 kPa,the response time is1.123 s faster than that of the FS-Gripper.The research results indicate that the flexibility of a pneumatic soft gripper is not only maintained in the case of the E-Gripper,but its gripping force is also obviously increased,and the response time is reduced.The E-Gripper thus shows great potential for future development and applications.展开更多
This paper presents a vacuum gripper (as an actuator of an intelligent micromanipulator) for micro objects (with a diameter of 100 - 300μm) assembly tasks. The gripper is composed of a vacuum unit and a control u...This paper presents a vacuum gripper (as an actuator of an intelligent micromanipulator) for micro objects (with a diameter of 100 - 300μm) assembly tasks. The gripper is composed of a vacuum unit and a control unit. The vacuum unit with a proportional valve and a pressure sensor, and the control unit with a PC + MCU two-layered control architecture are designed. The mechanical structure, workflow and major programs of the micro-gripper are presented. This paper discusses the major components of the adhesion force acting on micro objects. Some equations of the operation conditions m three phases of pick, hold and place are derived by mechanics analysis. The pneumatic system's pressure loss is inevitable. There are some formulas for calculating the amount of the pressure loss, but parameters in formulas are diffficult to be quantified and evaluated. To control the working pressure accurately, a pressure controller based on fuzzy logic is designed. With MATLAB's fuzzy logic toolbox, simulation experiments are performed to validate the performance of the fuzzy PD controller. The gripper is characterized by a steady and reliable performance and a simple structure, and it is suitable for handling micro objects with a sub-millimeter size.展开更多
A study about the action control of a dexterous mechanical gripper based on stereo-vision system was proposed. The vision-based system was used to replace the data-glove for gesture measurement. The stereo vision theo...A study about the action control of a dexterous mechanical gripper based on stereo-vision system was proposed. The vision-based system was used to replace the data-glove for gesture measurement. The stereo vision theory was applied to calculate the 3D information of the hand gesture. The information was used to generate the grasping action parameters of a 3-finger dexterous mechanical gripper. Combined with a force feedback device, a closed control loop could be constructed. The test for the precision of the algorithms and action control simulation result were shown in the paper.展开更多
A system using microgripper for gluing and adhesive bonding in automatic microassembly was designed, implemented, and tested. The development of system is guided by axiomatic design principle. With a compliant PU micr...A system using microgripper for gluing and adhesive bonding in automatic microassembly was designed, implemented, and tested. The development of system is guided by axiomatic design principle. With a compliant PU microgripper, regional-edge-statistics (RES) algorithm, and PD controller, a visual-servoing system was implemented for gripping micro object, gluing adhesive, and operating adhesive bonding. The RES algorithm estimated and tracked a gripper’s centroid to implement a visual-servoing control in the microassembly operation. The main specifications of the system are: gripping range of 60~80μm, working space of 7mm×5.74mm×15mm, system bandwidth of 15Hz. In the performance test, a copper rod with diameter 60μm was automatically gripped and transported for transferring glue and bonding. The 60μm copper rod was dipped into a glue container and moved, pressed and bonding to a copper rod of 380μm. The amount of binding glue was estimated about 5.7nl.展开更多
A layered architecture of muhisensory integration gripper system is first developed, which includes data acquisition layer, data processing layer and network interface layer. Then we propose a novel support-vector-mac...A layered architecture of muhisensory integration gripper system is first developed, which includes data acquisition layer, data processing layer and network interface layer. Then we propose a novel support-vector-machine-based data fusion algorithm and also design the gripper system by combining data fusion with CAN bus and CORBA technology, which provides the gripper system with outstanding characteristics such as modularization and intelligence. A multisensory integration gripper test bed is finally built on which a circuit board replacement job based on Internet-based teleoperation is achieved. The experimental results verify the validity of this gripper system design.展开更多
The characteristics of a kind of comb-drive electrostatic actuated micro-gripper are tested. The test platform using a microscope-CCD-computer, the state information of the micro-gripper obtained by data acquisition a...The characteristics of a kind of comb-drive electrostatic actuated micro-gripper are tested. The test platform using a microscope-CCD-computer, the state information of the micro-gripper obtained by data acquisition and image processing, voltage-displacement characteristic curve is obtained and the mathematical equation is established. The analysis of the characteristic equation has shown the consistency and rationality of the theoretical design and the experimental results. The main factors that cause the difference between the theoretical design and the actual test performance are analyzed, and the design method and experimental results is obtained for the micro-gripper in the field of micro-assembly.展开更多
The paper presents theoretical and experimental results on an original anthropomorphic gripping concept. Compared to the existing anthropomorphic grippers, this gripper is very simple, yet it has the advantage of high...The paper presents theoretical and experimental results on an original anthropomorphic gripping concept. Compared to the existing anthropomorphic grippers, this gripper is very simple, yet it has the advantage of high performance in terms of gripping possibilities and a very low manufacturing cost. Source of inspiration was the human hand, which is able to catch objects by only using two fingers. The analyzed anthropomorphic gripper has two fingers, with two phalanxes each, and is based on a new mechanism with articulated bars. The kinematic analysis performed on the gripping mechanism reveals the optimal displacement in the translational coupling, which was experimentally validated. The gripping possibilities were increased by attaching clamping jaws to each phalanx. The clamping jaws have been attached by means of spherical couplings, thus offering the possibility to catch objects with any type of surface. By carrying out gripping tests with different objects, we underline the importance of a safe use of the two-fingered anthropomorphic grippers in different applications. Due to the innovative mechanical structure, the gripper can insure the minimal gripping conditions, whilst the complexity of the objects that can be gripped make it suitable for the use in robots.展开更多
Soft pneumatic robotic grippers have found extensive applica-tions across various engineering domains,which prompts active research due to their splendid compliance,high flex-ibility,and safe human-robot interaction o...Soft pneumatic robotic grippers have found extensive applica-tions across various engineering domains,which prompts active research due to their splendid compliance,high flex-ibility,and safe human-robot interaction over conventional stiff counterparts.Previously simplified rod-based models prin-cipally focused on clarifying overall large deformation and bending postures of soft grippers from static or quasi-static perspectives,whereas it is challenging to elaborate grasping characteristics of soft grippers without considering contact interaction and nonlinear large deformation behaviors.To address this,based on absolute nodal coordinate formulation(ANCF),comprehensively allowing for structural complexity,geometric,material and boundary nonlinearities,and incorpor-ating Coulomb’friction law with a multiple-point contact method,we put forward an effective nonlinear dynamic mod-eling approach for exploring grasping capability of soft grip-per.Moreover,we solved the established dynamic equations using Generalized-αscheme,and conducted thorough numer-ical simulation analysis on a three-jaw soft pneumatic gripper(SPG)in terms of grasping configurations,displacements and contact forces.The proposed dynamic approach can accurately both describe complicated deformed configurations along with stress distribution and provide a feasible solution to simulate grasping targets,whose effectiveness and precision were analyzed theoretically and verified experimentally,which may shed new light on devising and optimizing other multi-functional SPGs.展开更多
Robots are playing an increasingly important role in engineering applications.Soft robots have promising applications in several fields due to their inherent advantages of compliance,low density,and soft interactions....Robots are playing an increasingly important role in engineering applications.Soft robots have promising applications in several fields due to their inherent advantages of compliance,low density,and soft interactions.A soft gripper based on bio-inspiration is proposed in this study.We analyze the cushioning and energy absorption mechanism of human fingertips in detail and provide insights for designing a soft gripper with a variable stiffness structure.We investigate the grasping modes through a large deformation modeling approach,which is verified through experiments.The characteristics of the three grasping modes are quantified through testing and can provide guidance for robotics manipulation.First,the adaptability of the soft gripper is verified by grasping multi-scale and extremely soft objects.Second,a cushioning model of the soft gripper is proposed,and the effectiveness of cushioning is verified by grasping extremely sharp objects and living organisms.Notably,we validate the advantages of the variable stiffness of the soft gripper,and the results show that the soft robot can robustly complete assemblies with a gap of only 0.1 mm.Owing to the unstructured nature of the engineering environment,the soft gripper can be applied in complex environments based on the abovementioned experimental analysis.Finally,we design the soft robotics system with feedback capture based on the inspiration of human catching behavior.The feasibility of engineering applications is initially verified through fast capture experiments on moving objects.The design concept of this robot can provide new insights for bionic machinery.展开更多
Continuously increasing applications of robot technologies in unstructured environments put higher requirements on the robotic grippers'performance,such as interaction capability,output force range,and controllabi...Continuously increasing applications of robot technologies in unstructured environments put higher requirements on the robotic grippers'performance,such as interaction capability,output force range,and controllability.However,currently,it is hard for either rigid or soft grippers to meet these requirements,as single soft or rigid structures alone are difficult to effectively overcome/alleviate their inherent defects,e.g.,low compliance of rigid structures and low output force of soft structures.To deal with these difficulties,soft-rigid coupling grippers,or hybrid grippers are proposed.Technically,the soft-rigid coupling is a promising design that combines soft and rigid structures,in order to exploit their respective advantages,such as the strength of rigid structures and compliance of soft structures,in the same set of the gripper system.For the first time,herein,this paper systematically discusses the collaboration strategies of the existing hybrid robotic grippers,by classifying them as Rigid-activesoft-passive,Rigid-passive-soft-active,and Rigid-active-soft-active.At the same time,we introduce the integrated fabrication methods of hybrid grippers,through which the soft and rigid structures with great stiffness and property differences can be coupled together to construct a stable system.Also,possible performance improvements on soft-rigid coupling design for gripper systems are discussed.展开更多
Developing large,soft grippers with high omnidirectional load(above 40 kg)has always been challenging.We address this challenge by developing a powerful soft gripper that can grasp the human body based on a soft-enclo...Developing large,soft grippers with high omnidirectional load(above 40 kg)has always been challenging.We address this challenge by developing a powerful soft gripper that can grasp the human body based on a soft-enclosed grasping structure and a soft-rigid coupling structure.The envelope size of the proposed soft gripper is 611.6 mm×559 mm×490.7 mm,the maximum grasping size is 417 mm,and the payload on the human body is more than 90 kg,which has exceeded most existing soft grippers.Furthermore,the grasping force prediction of the gripper is achieved through theoretical modeling.The primary contribution of this work is to overcome the size and payload limits of current soft grippers and implement a human-grasping experiment based on the soft-grasping method.展开更多
Inspired by the morphology of human fingers,this paper proposes an underactuated rigid-soft coupled robotic gripper whose finger is designed as the combination of a rigid skeleton and a soft tissue.Different from the ...Inspired by the morphology of human fingers,this paper proposes an underactuated rigid-soft coupled robotic gripper whose finger is designed as the combination of a rigid skeleton and a soft tissue.Different from the current grippers who have multi-point contact or line contact with the target objects,the proposed robotic gripper enables surface contact and leads to flexible grasping and robust holding.The actuated mechanism,which is the palm of proposed gripper,is optimized for excellent operability based on a mathematical model.Soft material selection and rigid skeleton structure of fingers are then analyzed through a series of dynamic simulations by RecurDyn and Adams.After above design process including topology analysis,actuated mechanism optimization,soft material selection and rigid skeleton analysis,the rigid-soft coupled robotic gripper is fabricated via 3D printing.Finally,the grasping and holding capabilities are validated by experiments testing the stiffness of a single finger and the impact resistance of the gripper.Experimental results show that the proposed rigid-soft coupled robotic gripper can adapt to objects with different properties(shape,size,weight and softness)and hold them steadily.It confirms the feasibility of the design procedure,as well as the compliant and dexterous grasping capabilities of proposed rigid-soft coupled gripper.展开更多
To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being ...To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being entangled by aquatic plants,this paper proposes a soft robotic gripper with multi-stem twining.The proposed robotic gripper can realize a larger contact area of surrounding or containing object and more layers of a twining object than the current twining gripping methods.It not only retains the adaptive advantages of twining grasping but also improves the grasping force.First,based on the mechanical characteristics of the multi-stem twining of the gripper,the twining grasping model is developed.Then,the force on the fiber is deduced by using the twining theory,and the axial force of the gripper is analyzed based on the equivalent model of the rubber ring.Finally,the torsion experiments of fibers and the grasping experiments of the gripper are designed and conducted.The torsion experiment of fibers verifies the influence of a different number of fiber ropes and fiber torque on the grasping force,and the grasping experiment reflects the large load of the gripper and the high adaptability and practicability under different tasks.展开更多
The pneumatic gripper in industrial applications has the advantages of structure simplicity and great adaptability,but its gripping power is usually limited due to the low modulus of soft materials.To address this pro...The pneumatic gripper in industrial applications has the advantages of structure simplicity and great adaptability,but its gripping power is usually limited due to the low modulus of soft materials.To address this problem,a novel bionic pneumatic gripper inspired by spider legs is proposed.The design has two pairs of symmetrical fingers,each finger consists of two pneumatic actuated joints,two rigid links and one pneumatic soft pad.The rigid link connects the pneumatic chamber which is enclosed in a retractable shell to increase the actuation pressure and the gripping force.The compressibility and elasticity of the soft joint and pad enable the gripper to grasp fragile objects without damage.The modeling of the bionic gripper is developed,and the parameters of the joint actuators are optimized accordingly.The prototype is manufactured and tested with the developed experimental platform,where the gripping force,flexibility and adaptability are evaluated.The results indicate that the designed gripper can grasp irregular and fragile items in sizes from 40 to 140 mm without damage,and the lifting weight is up to 15 N.展开更多
During assembly process,the miniature part needs to be fixed in its assembly position.In some occasions where adhesive is used,the joining force is not established due to the adhesive curing process,in that case the l...During assembly process,the miniature part needs to be fixed in its assembly position.In some occasions where adhesive is used,the joining force is not established due to the adhesive curing process,in that case the locking of parts is required.Manual locking is difficult to meet the increasing demand for mass production.To solve this problem and realize fully automatic assembly,a novel gripper module was designed and corresponding locking method was proposed.Thanks to the functional integration,the gripper module is capable of manipulating and locking the part.This module is integrated into the assembly system and plays a crucial role in automatic assembly.The locking method for automatic assembly is based on the integration of the part picking up and the locking unit releasing.After being placed accurately at its desired position,the miniature part can be automatically locked by releasing the locking unit.The innovative structure and mechanism of the gripper module convert the spring force into the locking force of the miniature part,ensuring non-rigid locking and suitable small locking force.Locking principle,flexibility and limitations of the proposed method were clarified in detail.Moreover,an effective compensation strategy was used to achieve accurate and stable pickup of the part,which increased the reliability of the assembly process.During automatic locking,the disturbances to the part due to the eccentric load were analyzed.The effectiveness of the gripper module and proposed method was verified by experiment.Experimental results indicated that the modular system integrated with the gripper module could meet the requirements of fully automatic assembly.Manual locking is replaced by automatic locking,and workers are liberated from tedious manual operations.The improvement of automation level enables assembly equipment to be applied to mass production scenarios.展开更多
提出了一种单顶点多折痕(single-vertex and multi-crease,SVMC)的双稳态折纸软体夹持器,具有结构简单、成本低、变形速度快、承载能力强等优点,有效改善了传统模型响应速度慢、夹持效率低等缺陷。该模型基于水弹结构建立,利用球面三角...提出了一种单顶点多折痕(single-vertex and multi-crease,SVMC)的双稳态折纸软体夹持器,具有结构简单、成本低、变形速度快、承载能力强等优点,有效改善了传统模型响应速度慢、夹持效率低等缺陷。该模型基于水弹结构建立,利用球面三角形余弦定理分析了折痕角度之间的关系并建立运动学方程;同时借助扭簧模型探究变形过程中的势能转化规律。分析了折痕长度与初始角度对能力存储和释放过程的影响,并以此为基础优化了模型结构参数。实验结果表明,当受到2.6 N的外部触发力时,软体夹持器可在61 ms内完成从外展姿态到内缩状态的变化,实现对目标表面的快速包络;同时,借助线绳驱动提供更大的夹紧力,完成对目标的高效稳定抓取。此模型可广泛应用于复杂轮廓目标抓取和快速食品分拣领域。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51305202)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20130764)
文摘In current research on soft grippers,pneumatically actuated soft grippers are generally fabricated using fully soft materials,which have the advantage of flexibility as well as the disadvantages of a small gripping force and slow response speed.To improve these characteristics,a novel pneumatic soft gripper with a jointed endoskeleton structure(E-Gripper)is developed,in which the muscle actuating function has been separated from the force bearing function.The soft action of an E-Gripper finger is performed by some air chambers surrounded by multilayer rubber embedded in the restraining fiber.The gripping force is borne and transferred by the rigid endoskeleton within the E-Gripper finger Thus,the gripping force and action response speed can be increased while the flexibility is maintained.Through experiments,the bending angle of each finger segment,response time,and gripping force of the E-Gripper have been measured,which provides a basis for designing and controlling the soft gripper The test results have shown that the maximum gripping force of the E-Gripper can be 35 N,which is three times greater than that of a fully soft gripper(FS-Gripper)of the same size.At the maximum charging pressure of 150 kPa,the response time is1.123 s faster than that of the FS-Gripper.The research results indicate that the flexibility of a pneumatic soft gripper is not only maintained in the case of the E-Gripper,but its gripping force is also obviously increased,and the response time is reduced.The E-Gripper thus shows great potential for future development and applications.
基金This work was supported bythe National Natural Science Foundation of China (No .60275013) the Natural High Technology Researchand DevelopementProgramof China(No .2004AA844120) .
文摘This paper presents a vacuum gripper (as an actuator of an intelligent micromanipulator) for micro objects (with a diameter of 100 - 300μm) assembly tasks. The gripper is composed of a vacuum unit and a control unit. The vacuum unit with a proportional valve and a pressure sensor, and the control unit with a PC + MCU two-layered control architecture are designed. The mechanical structure, workflow and major programs of the micro-gripper are presented. This paper discusses the major components of the adhesion force acting on micro objects. Some equations of the operation conditions m three phases of pick, hold and place are derived by mechanics analysis. The pneumatic system's pressure loss is inevitable. There are some formulas for calculating the amount of the pressure loss, but parameters in formulas are diffficult to be quantified and evaluated. To control the working pressure accurately, a pressure controller based on fuzzy logic is designed. With MATLAB's fuzzy logic toolbox, simulation experiments are performed to validate the performance of the fuzzy PD controller. The gripper is characterized by a steady and reliable performance and a simple structure, and it is suitable for handling micro objects with a sub-millimeter size.
文摘A study about the action control of a dexterous mechanical gripper based on stereo-vision system was proposed. The vision-based system was used to replace the data-glove for gesture measurement. The stereo vision theory was applied to calculate the 3D information of the hand gesture. The information was used to generate the grasping action parameters of a 3-finger dexterous mechanical gripper. Combined with a force feedback device, a closed control loop could be constructed. The test for the precision of the algorithms and action control simulation result were shown in the paper.
文摘A system using microgripper for gluing and adhesive bonding in automatic microassembly was designed, implemented, and tested. The development of system is guided by axiomatic design principle. With a compliant PU microgripper, regional-edge-statistics (RES) algorithm, and PD controller, a visual-servoing system was implemented for gripping micro object, gluing adhesive, and operating adhesive bonding. The RES algorithm estimated and tracked a gripper’s centroid to implement a visual-servoing control in the microassembly operation. The main specifications of the system are: gripping range of 60~80μm, working space of 7mm×5.74mm×15mm, system bandwidth of 15Hz. In the performance test, a copper rod with diameter 60μm was automatically gripped and transported for transferring glue and bonding. The 60μm copper rod was dipped into a glue container and moved, pressed and bonding to a copper rod of 380μm. The amount of binding glue was estimated about 5.7nl.
文摘A layered architecture of muhisensory integration gripper system is first developed, which includes data acquisition layer, data processing layer and network interface layer. Then we propose a novel support-vector-machine-based data fusion algorithm and also design the gripper system by combining data fusion with CAN bus and CORBA technology, which provides the gripper system with outstanding characteristics such as modularization and intelligence. A multisensory integration gripper test bed is finally built on which a circuit board replacement job based on Internet-based teleoperation is achieved. The experimental results verify the validity of this gripper system design.
文摘The characteristics of a kind of comb-drive electrostatic actuated micro-gripper are tested. The test platform using a microscope-CCD-computer, the state information of the micro-gripper obtained by data acquisition and image processing, voltage-displacement characteristic curve is obtained and the mathematical equation is established. The analysis of the characteristic equation has shown the consistency and rationality of the theoretical design and the experimental results. The main factors that cause the difference between the theoretical design and the actual test performance are analyzed, and the design method and experimental results is obtained for the micro-gripper in the field of micro-assembly.
文摘The paper presents theoretical and experimental results on an original anthropomorphic gripping concept. Compared to the existing anthropomorphic grippers, this gripper is very simple, yet it has the advantage of high performance in terms of gripping possibilities and a very low manufacturing cost. Source of inspiration was the human hand, which is able to catch objects by only using two fingers. The analyzed anthropomorphic gripper has two fingers, with two phalanxes each, and is based on a new mechanism with articulated bars. The kinematic analysis performed on the gripping mechanism reveals the optimal displacement in the translational coupling, which was experimentally validated. The gripping possibilities were increased by attaching clamping jaws to each phalanx. The clamping jaws have been attached by means of spherical couplings, thus offering the possibility to catch objects with any type of surface. By carrying out gripping tests with different objects, we underline the importance of a safe use of the two-fingered anthropomorphic grippers in different applications. Due to the innovative mechanical structure, the gripper can insure the minimal gripping conditions, whilst the complexity of the objects that can be gripped make it suitable for the use in robots.
基金supported by Natural Science Foundation of Zhejiang Province (Grant No.LQ22A020003)National Natural Science Foundation of China (Grant No.52075499)for which all authors are grateful.
文摘Soft pneumatic robotic grippers have found extensive applica-tions across various engineering domains,which prompts active research due to their splendid compliance,high flex-ibility,and safe human-robot interaction over conventional stiff counterparts.Previously simplified rod-based models prin-cipally focused on clarifying overall large deformation and bending postures of soft grippers from static or quasi-static perspectives,whereas it is challenging to elaborate grasping characteristics of soft grippers without considering contact interaction and nonlinear large deformation behaviors.To address this,based on absolute nodal coordinate formulation(ANCF),comprehensively allowing for structural complexity,geometric,material and boundary nonlinearities,and incorpor-ating Coulomb’friction law with a multiple-point contact method,we put forward an effective nonlinear dynamic mod-eling approach for exploring grasping capability of soft grip-per.Moreover,we solved the established dynamic equations using Generalized-αscheme,and conducted thorough numer-ical simulation analysis on a three-jaw soft pneumatic gripper(SPG)in terms of grasping configurations,displacements and contact forces.The proposed dynamic approach can accurately both describe complicated deformed configurations along with stress distribution and provide a feasible solution to simulate grasping targets,whose effectiveness and precision were analyzed theoretically and verified experimentally,which may shed new light on devising and optimizing other multi-functional SPGs.
基金supported by the General Program(Grant No.12272222)Key Program(Grant No.11932001)of the National Natural Science Foundation of China,for which the authors are grateful.
文摘Robots are playing an increasingly important role in engineering applications.Soft robots have promising applications in several fields due to their inherent advantages of compliance,low density,and soft interactions.A soft gripper based on bio-inspiration is proposed in this study.We analyze the cushioning and energy absorption mechanism of human fingertips in detail and provide insights for designing a soft gripper with a variable stiffness structure.We investigate the grasping modes through a large deformation modeling approach,which is verified through experiments.The characteristics of the three grasping modes are quantified through testing and can provide guidance for robotics manipulation.First,the adaptability of the soft gripper is verified by grasping multi-scale and extremely soft objects.Second,a cushioning model of the soft gripper is proposed,and the effectiveness of cushioning is verified by grasping extremely sharp objects and living organisms.Notably,we validate the advantages of the variable stiffness of the soft gripper,and the results show that the soft robot can robustly complete assemblies with a gap of only 0.1 mm.Owing to the unstructured nature of the engineering environment,the soft gripper can be applied in complex environments based on the abovementioned experimental analysis.Finally,we design the soft robotics system with feedback capture based on the inspiration of human catching behavior.The feasibility of engineering applications is initially verified through fast capture experiments on moving objects.The design concept of this robot can provide new insights for bionic machinery.
基金supported by the National Natural Science Foundation of China(Grant Nos.52188102 and U1613204)。
文摘Continuously increasing applications of robot technologies in unstructured environments put higher requirements on the robotic grippers'performance,such as interaction capability,output force range,and controllability.However,currently,it is hard for either rigid or soft grippers to meet these requirements,as single soft or rigid structures alone are difficult to effectively overcome/alleviate their inherent defects,e.g.,low compliance of rigid structures and low output force of soft structures.To deal with these difficulties,soft-rigid coupling grippers,or hybrid grippers are proposed.Technically,the soft-rigid coupling is a promising design that combines soft and rigid structures,in order to exploit their respective advantages,such as the strength of rigid structures and compliance of soft structures,in the same set of the gripper system.For the first time,herein,this paper systematically discusses the collaboration strategies of the existing hybrid robotic grippers,by classifying them as Rigid-activesoft-passive,Rigid-passive-soft-active,and Rigid-active-soft-active.At the same time,we introduce the integrated fabrication methods of hybrid grippers,through which the soft and rigid structures with great stiffness and property differences can be coupled together to construct a stable system.Also,possible performance improvements on soft-rigid coupling design for gripper systems are discussed.
基金supported by the National Natural Science Foundation of China (Grant No.51975505)the Ningbo Natural Science Foundation of China (Grant No.2022J134)the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China (Grant No.ICT 2022B14)。
文摘Developing large,soft grippers with high omnidirectional load(above 40 kg)has always been challenging.We address this challenge by developing a powerful soft gripper that can grasp the human body based on a soft-enclosed grasping structure and a soft-rigid coupling structure.The envelope size of the proposed soft gripper is 611.6 mm×559 mm×490.7 mm,the maximum grasping size is 417 mm,and the payload on the human body is more than 90 kg,which has exceeded most existing soft grippers.Furthermore,the grasping force prediction of the gripper is achieved through theoretical modeling.The primary contribution of this work is to overcome the size and payload limits of current soft grippers and implement a human-grasping experiment based on the soft-grasping method.
基金This was supported in part by the National Natural Science Foundation of China under Grant 52275027,52275028 and 52205028in part by the Tianjin Science and Technology Planning Project under Grant 20201193.
文摘Inspired by the morphology of human fingers,this paper proposes an underactuated rigid-soft coupled robotic gripper whose finger is designed as the combination of a rigid skeleton and a soft tissue.Different from the current grippers who have multi-point contact or line contact with the target objects,the proposed robotic gripper enables surface contact and leads to flexible grasping and robust holding.The actuated mechanism,which is the palm of proposed gripper,is optimized for excellent operability based on a mathematical model.Soft material selection and rigid skeleton structure of fingers are then analyzed through a series of dynamic simulations by RecurDyn and Adams.After above design process including topology analysis,actuated mechanism optimization,soft material selection and rigid skeleton analysis,the rigid-soft coupled robotic gripper is fabricated via 3D printing.Finally,the grasping and holding capabilities are validated by experiments testing the stiffness of a single finger and the impact resistance of the gripper.Experimental results show that the proposed rigid-soft coupled robotic gripper can adapt to objects with different properties(shape,size,weight and softness)and hold them steadily.It confirms the feasibility of the design procedure,as well as the compliant and dexterous grasping capabilities of proposed rigid-soft coupled gripper.
基金supported in part by Natural Science Foundation Key projects of Hebei Province under Grant E2021203125in part by the Joint fund of the Science&Technology Department of Liaoning Province and State Key Laboratory of Robotics,China under Grant 2021KF2206+1 种基金in part by Local science and technology development fund projects guided by the central government under Grant 206Z1807Gin part by Hebei Province Graduate Innovation Funding Project under Grant CXZZBS2022127.
文摘To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being entangled by aquatic plants,this paper proposes a soft robotic gripper with multi-stem twining.The proposed robotic gripper can realize a larger contact area of surrounding or containing object and more layers of a twining object than the current twining gripping methods.It not only retains the adaptive advantages of twining grasping but also improves the grasping force.First,based on the mechanical characteristics of the multi-stem twining of the gripper,the twining grasping model is developed.Then,the force on the fiber is deduced by using the twining theory,and the axial force of the gripper is analyzed based on the equivalent model of the rubber ring.Finally,the torsion experiments of fibers and the grasping experiments of the gripper are designed and conducted.The torsion experiment of fibers verifies the influence of a different number of fiber ropes and fiber torque on the grasping force,and the grasping experiment reflects the large load of the gripper and the high adaptability and practicability under different tasks.
基金supported by the National Natural Science Foundation of China (52175100,51975394)the Natural Science Foundation of Jiangsu Province (BK20211336).
文摘The pneumatic gripper in industrial applications has the advantages of structure simplicity and great adaptability,but its gripping power is usually limited due to the low modulus of soft materials.To address this problem,a novel bionic pneumatic gripper inspired by spider legs is proposed.The design has two pairs of symmetrical fingers,each finger consists of two pneumatic actuated joints,two rigid links and one pneumatic soft pad.The rigid link connects the pneumatic chamber which is enclosed in a retractable shell to increase the actuation pressure and the gripping force.The compressibility and elasticity of the soft joint and pad enable the gripper to grasp fragile objects without damage.The modeling of the bionic gripper is developed,and the parameters of the joint actuators are optimized accordingly.The prototype is manufactured and tested with the developed experimental platform,where the gripping force,flexibility and adaptability are evaluated.The results indicate that the designed gripper can grasp irregular and fragile items in sizes from 40 to 140 mm without damage,and the lifting weight is up to 15 N.
基金supported by LiaoNing Revitalization Talent Program(Grant No.2002020)the Major Project of Basic Scientific Research of Chinese Ministry(Grant No.JCYK2016205A003).
文摘During assembly process,the miniature part needs to be fixed in its assembly position.In some occasions where adhesive is used,the joining force is not established due to the adhesive curing process,in that case the locking of parts is required.Manual locking is difficult to meet the increasing demand for mass production.To solve this problem and realize fully automatic assembly,a novel gripper module was designed and corresponding locking method was proposed.Thanks to the functional integration,the gripper module is capable of manipulating and locking the part.This module is integrated into the assembly system and plays a crucial role in automatic assembly.The locking method for automatic assembly is based on the integration of the part picking up and the locking unit releasing.After being placed accurately at its desired position,the miniature part can be automatically locked by releasing the locking unit.The innovative structure and mechanism of the gripper module convert the spring force into the locking force of the miniature part,ensuring non-rigid locking and suitable small locking force.Locking principle,flexibility and limitations of the proposed method were clarified in detail.Moreover,an effective compensation strategy was used to achieve accurate and stable pickup of the part,which increased the reliability of the assembly process.During automatic locking,the disturbances to the part due to the eccentric load were analyzed.The effectiveness of the gripper module and proposed method was verified by experiment.Experimental results indicated that the modular system integrated with the gripper module could meet the requirements of fully automatic assembly.Manual locking is replaced by automatic locking,and workers are liberated from tedious manual operations.The improvement of automation level enables assembly equipment to be applied to mass production scenarios.
文摘提出了一种单顶点多折痕(single-vertex and multi-crease,SVMC)的双稳态折纸软体夹持器,具有结构简单、成本低、变形速度快、承载能力强等优点,有效改善了传统模型响应速度慢、夹持效率低等缺陷。该模型基于水弹结构建立,利用球面三角形余弦定理分析了折痕角度之间的关系并建立运动学方程;同时借助扭簧模型探究变形过程中的势能转化规律。分析了折痕长度与初始角度对能力存储和释放过程的影响,并以此为基础优化了模型结构参数。实验结果表明,当受到2.6 N的外部触发力时,软体夹持器可在61 ms内完成从外展姿态到内缩状态的变化,实现对目标表面的快速包络;同时,借助线绳驱动提供更大的夹紧力,完成对目标的高效稳定抓取。此模型可广泛应用于复杂轮廓目标抓取和快速食品分拣领域。