期刊文献+
共找到1,198篇文章
< 1 2 60 >
每页显示 20 50 100
Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke 被引量:1
1
作者 Xiaodi Xie Lei Wang +2 位作者 Shanshan Dong ShanChun Ge Ting Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期519-528,共10页
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated.In the human body,the gut and lung are regarded as the key reactional target... Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated.In the human body,the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks.Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability.In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other.Here,we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis.We found that abnormal intestinal flora,the intestinal microenvironment,lung infection,chronic diseases,and mechanical ventilation can worsen the outcome of ischemic stroke.This review also introduces the influence of the brain on the gut and lungs after stroke,highlighting the bidirectional feedback effect among the gut,lungs,and brain. 展开更多
关键词 enteric glia cells gut microbiota gut-brain axis immune response inflammation ischemic stroke lung-brain axis microglia
下载PDF
Unraveling the gut-brain axis:the impact of steroid hormones and nutrition on Parkinson's disease
2
作者 Paula Maria Neufeld Ralf A.Nettersheim +3 位作者 Veronika Matschke Matthias Vorgerd Sarah Stahlke Carsten Theiss 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2219-2228,共10页
This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivot... This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease,encompassing diverse components such as the gut microbiota,immune system,metabolism,and neural pathways.The gut microbiome,profoundly influenced by dietary factors,emerges as a key player.Nutrition during the first 1000 days of life shapes the gut microbiota composition,influencing immune responses and impacting both child development and adult health.High-fat,high-sugar diets can disrupt this delicate balance,contributing to inflammation and immune dysfunction.Exploring nutritional strategies,the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk.Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders.Beyond nutrition,emerging research uncovers potential interactions between steroid hormones,nutrition,and Parkinson's disease.Progesterone,with its anti-inflammatory properties and presence in the nervous system,offers a novel option for Parkinson's disease therapy.Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects.The review addresses the hypothesis thatα-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve.Gastrointestinal symptoms preceding motor symptoms support this hypothesis.Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances,emphasizing the potential of microbiota-based interventions.In summary,this review uncovers the complex web of interactions between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the gut-brain axis framework.Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease. 展开更多
关键词 diet gut-brain axis microbiome neurodegenerative diseases NUTRITION Parkinson's disease PROGESTERONE steroid hormones
下载PDF
Functional gastrointestinal disorders and gut-brain axis: What does the future hold? 被引量:15
3
作者 Kashif Mukhtar Hasham Nawaz Shahab Abid 《World Journal of Gastroenterology》 SCIE CAS 2019年第5期552-566,共15页
Despite their high prevalence, lack of understanding of the exact pathophysiology of the functional gastrointestinal disorders has restricted us to symptomatic diagnostic tools and therapies. Complex mechanisms underl... Despite their high prevalence, lack of understanding of the exact pathophysiology of the functional gastrointestinal disorders has restricted us to symptomatic diagnostic tools and therapies. Complex mechanisms underlying the disturbances in the bidirectional communication between the gastrointestinal tract and the brain have a vital role in the pathogenesis and are key to our understanding of the disease phenomenon. Although we have come a long way in our understanding of these complex disorders with the help of studies on animals especially rodents, there need to be more studies in humans, especially to identify the therapeutic targets. This review study looks at the anatomical features of the gut-brain axis in order to discuss the different factors and underlying molecular mechanisms that may have a role in the pathogenesis of functional gastrointestinal disorders. These molecules and their receptors can be targeted in future for further studies and possible therapeutic interventions. The article also discusses the potential role of artificial intelligence and machine learning and its possible role in our understanding of these scientifically challenging disorders. 展开更多
关键词 Functional gastrointestinal disorders IDIOPATHIC bowel syndrome gut-brain AXIS Microbiome-gut-brain AXIS Machine learning Artificial intelligence
下载PDF
Focus on the gut-brain axis: multiple sclerosis, the intestinal barrier and the microbiome 被引量:6
4
作者 Carlos R Camara-Lemarroy Luanne M Metz V Wee Yong 《World Journal of Gastroenterology》 SCIE CAS 2018年第37期4217-4223,共7页
The brain-gut axis serves as the bidirectional connection between the gut microbiome, the intestinal barrier and the immune system that might be relevant for the pathophysiology of inflammatory demyelinating diseases.... The brain-gut axis serves as the bidirectional connection between the gut microbiome, the intestinal barrier and the immune system that might be relevant for the pathophysiology of inflammatory demyelinating diseases. People with multiple sclerosis have been shown to have an altered microbiome, increased intestinal permeability and changes in bile acid metabolism. Experimental evidence suggests that these changes can lead to profound alterations of peripheral and central nervous system immune regulation. Besides being of pathophysiological interest, the brain-gut axis could also open new avenues of therapeutic targets. Modification of the microbiome, the use of probiotics, fecal microbiota transplantation, supplementation with bile acids and intestinal barrier enhancers are all promising candidates. Hopefully, pre-clinical studies and clinical trials will soon yield significant results. 展开更多
关键词 Multiple SCLEROSIS MICROBIOME Intestinal barrier Bile acids gut-brain AXIS
下载PDF
Microbiota-gut-brain axis and its affect inflammatory bowel disease:Pathophysiological concepts and insights for clinicians 被引量:7
5
作者 Emanuele Sinagra Erika Utzeri +3 位作者 Gaetano Cristian Morreale Carlo Fabbri Fabio Pace Andrea Anderloni 《World Journal of Clinical Cases》 SCIE 2020年第6期1013-1025,共13页
Despite the bi-directional interaction between gut microbiota and the brain not being fully understood,there is increasing evidence arising from animal and human studies that show how this intricate relationship may f... Despite the bi-directional interaction between gut microbiota and the brain not being fully understood,there is increasing evidence arising from animal and human studies that show how this intricate relationship may facilitate inflammatory bowel disease(IBD)pathogenesis,with consequent important implications on the possibility to improve the clinical outcomes of the diseases themselves,by acting on the different components of this system,mainly by modifying the microbiota.With the emergence of precision medicine,strategies in which patients with IBD might be categorized other than for standard gut symptom complexes could offer the opportunity to tailor therapies to individual patients.The aim of this narrative review is to elaborate on the concept of the gutbrain-microbiota axis and its clinical significance regarding IBD on the basis of recent scientific literature,and finally to focus on pharmacological therapies that could allow us to favorably modify the function of this complex system. 展开更多
关键词 Irritable BOWEL syndrome Inflammatory BOWEL disease gut-brain AXIS Therapy
下载PDF
Gut-brain axis:Focus on gut metabolites short-chain fatty acids 被引量:4
6
作者 Cen Guo Ya-Jing Huo +2 位作者 Yu Li Yan Han Da Zhou 《World Journal of Clinical Cases》 SCIE 2022年第6期1754-1763,共10页
Emerging evidence supports that the gut microbiome,reconsidered as a new organ in the human body,can not only affect the local gut,but also communicate with the brain via multiple pathways related to neuroendocrine,im... Emerging evidence supports that the gut microbiome,reconsidered as a new organ in the human body,can not only affect the local gut,but also communicate with the brain via multiple pathways related to neuroendocrine,immune,and neural pathways,thereby proposing the new concept of the microbiome-gut-brain(MGB)axis.Recently,the role of short-chain fatty acids(SCFAs),which are the main anaerobic fermented metabolites of the gut microbiota in the MGB axis,has garnered significant attention.SCFAs are involved in a broad range of central neurological diseases,including neurodegenerative diseases,cerebral vascular diseases,epilepsy,neuroimmune inflammatory diseases,and mood disorders.However,the underlying mechanism of SCFA-related distant organ crosstalk is yet to be elucidated.Herein,we summarize current knowledge regarding interactions between SCFAs and the MGB axis,as well as their protective effects against central neurological diseases. 展开更多
关键词 gut-brain axis Short-chain fatty acids Neurological disease Microbiome-gutbrain
下载PDF
Healthy axis: Towards an integrated view of the gut-brain health
7
作者 Federico Boem Amedeo Amedei 《World Journal of Gastroenterology》 SCIE CAS 2019年第29期3838-3841,共4页
Despite the lack of precise mechanisms of action, a growing number of studies suggests that gut microbiota is involved in a great number of physiological functions of the human organism. In fact, the composition and t... Despite the lack of precise mechanisms of action, a growing number of studies suggests that gut microbiota is involved in a great number of physiological functions of the human organism. In fact, the composition and the relations of intestinal microbial populations play a role, either directly or indirectly, to both the onset and development of various pathologies. In particular, the gastrointestinal tract and nervous system are closely connected by the so-called gut–brain axis, a complex bidirectional system in which the central and enteric nervous system interact with each other, also engaging endocrine, immune and neuronal circuits. This allows us to put forward new working hypotheses on the origin of some multifactorial diseases: from eating to neuropsychiatric disorders (such as autism spectrum disorders and depression) up to diabetes and tumors (such as colorectal cancer). This scenario reinforces the idea that the microbiota and its composition represent a factor, which is no longer negligible, not only in preserving what we call “health” but also in defining and thus determining it. Therefore, we propose to consider the gut-brain axis as the focus of new scientific and clinical investigation as long as the locus of possible systemic therapeutic interventions. 展开更多
关键词 Microbiota gut-brain AXIS DYSBIOSIS SYMBIOSIS PERSON-CENTERED MEDICINE Personalized MEDICINE
下载PDF
Gut-brain connection: The neuroprotective effects of the anti-diabetic drug liraglutide 被引量:9
8
作者 Emanuel Monteiro Candeias Inês Carolina Sebastio +7 位作者 Susana Maria Cardoso Sónia Catarina Correia Cristina Isabel Carvalho Ana Isabel Plácido Maria Sancha Santos Catarina Resende Oliveira Paula Isabel Moreira Ana Isabel Duarte 《World Journal of Diabetes》 SCIE CAS 2015年第6期807-827,共21页
Long-acting glucagon-like peptide-1(GLP-1) analogues marketed for type 2 diabetes(T2D) treatment have been showing positive and protective effects in several different tissues, including pancreas, heart or even brain.... Long-acting glucagon-like peptide-1(GLP-1) analogues marketed for type 2 diabetes(T2D) treatment have been showing positive and protective effects in several different tissues, including pancreas, heart or even brain. This gut secreted hormone plays a potent insulinotropic activity and an important role in maintaining glucose homeostasis. Furthermore, growing evidences suggest the occurrence of several commonalities between T2 D and neurodegenerative diseases, insulin resistance being pointed as a main cause for cognitive decline and increased risk to develop dementia. In this regard, it has also been suggested that stimulation of brain insulin signaling may have a protective role against cognitive deficits. As GLP-1 receptors(GLP-1R) are expressed throughout the central nervous system and GLP-1 may cross the blood-brain-barrier, an emerging hypothesis suggests that they may be promising therapeutic targets against brain dysfunctional insulin signaling-related pathologies. Importantly, GLP-1 actions depend not only on the direct effect mediated by its receptor activation, but also on the gut-brain axis involving an exchange of signals between both tissues via the vagal nerve, thereby regulating numerous physiological functions(e.g., energy homeostasis, glucose-dependent insulin secretion, as well as appetite and weight control). Amongst the incretin/GLP-1 mimetics class of anti-T2 D drugs with an increasingly described neuroprotective potential, the already marketed liraglutide emerged as a GLP-1R agonist highly resistant to dipeptidyl peptidase-4 degradation(thereby having an increased half-life) and whose systemic GLP-1R activity is comparable to that of native GLP-1. Importantly, several preclinical studies showed anti-apoptotic, anti-inflammatory, anti-oxidant and neuroprotective effects of liraglutide against T2 D, stroke and Alzheimer disease(AD), whereas several clinical trials, demonstrated some surprising benefits of liraglutide on weight loss, microglia inhibition, behavior and cognition, and in AD biomarkers. Herein, we discuss the GLP-1 action through the gut-brain axis, the hormone's regulation of some autonomic functions and liraglutide's neuroprotective potential. 展开更多
关键词 Type 2 diabetes Glucagon-like peptide-1 GUT Brain Insulin LIRAGLUTIDE ALZHEIMER disease NEUROPROTECTION
下载PDF
“Sentinel or accomplice”:gut microbiota and microglia crosstalk in disorders of gut-brain interaction 被引量:1
9
作者 Haonan Zheng Cunzheng Zhang +1 位作者 Jindong Zhang Liping Duan 《Protein & Cell》 SCIE CSCD 2023年第10期726-742,共17页
Abnormal brain-gut interaction is considered the core pathological mechanism behind the disorders of gut-brain interaction(DGBI),in which the intestinal microbiota plays an important role.Microglia are the“sentinels... Abnormal brain-gut interaction is considered the core pathological mechanism behind the disorders of gut-brain interaction(DGBI),in which the intestinal microbiota plays an important role.Microglia are the“sentinels”of the central nervous system(CNS),which participate in tissue damage caused by traumatic brain injury,resist central infection and participate in neurogenesis,and are involved in the occurrence of various neurological diseases.With in-depth research on DGBI,we could find an interaction between the intestinal microbiota and microglia and that they are jointly involved in the occurrence of DGBI,especially in individuals with comorbidities of mental disorders,such as irritable bowel syndrome(IBS).This bidirectional regulation of microbiota and microglia provides a new direction for the treatment of DGBI.In this review,we focus on the role and underlying mechanism of the interaction between gut microbiota and microglia in DGBI,especially IBS,and the corresponding clinical application prospects and highlight its potential to treat DGBI in individuals with psychiatric comorbidities. 展开更多
关键词 gut microbiota MICROGLIA disorders of gut-brain interaction irritable bowel syndrome
原文传递
The Gut Brain Connection
10
作者 Saeed Alzubide Muslih Alhalafi 《Journal of Behavioral and Brain Science》 2024年第3期103-117,共15页
The gut-brain connection is a bidirectional communication system that links the gut microbiome to the central nervous system (CNS). The gut-brain axis communicates through a variety of mechanisms, including the releas... The gut-brain connection is a bidirectional communication system that links the gut microbiome to the central nervous system (CNS). The gut-brain axis communicates through a variety of mechanisms, including the release of hormones, neurotransmitters, and cytokines. These signaling molecules can travel from the gut to the brain and vice versa, influencing various physiological and cognitive functions. Emerging therapeutic strategies targeting the gut-brain connection include probiotics, prebiotics, and faecal microbiota transplantation (FMT). Probiotics are live microorganisms that are similar to the beneficial bacteria that are naturally found in the gut. Prebiotics are non-digestible fibers that feed the beneficial bacteria in the gut. FMT is a procedure in which faecal matter from a healthy donor is transplanted into the gut of a person with a diseased microbiome. Probiotics, prebiotics, and FMT have been shown to be effective in treating a variety of gastrointestinal disorders, and there is growing evidence that they may also be effective in treating neurological and psychiatric disorders. This review explores the emerging field of the gut-brain connection, focusing on the communication pathways between the gut microbiome and the central nervous system. We summarize the potential roles of gut dysbiosis in various neurological and psychiatric disorders. Additionally, we discuss potential therapeutic strategies, research limitations, and future directions in this exciting area of research. More research is needed to fully understand the mechanisms underlying the gut-brain connection and to develop safe and effective therapies that target this pathway. However, the findings to date are promising, and there is the potential to revolutionize the way we diagnose and treat a variety of neurological and psychiatric disorders. 展开更多
关键词 gut-brain Connection gut-brain Axis Enteric Nervous System Microbiota NEUROTRANSMITTERS Neuroinflammation and Mental Health
下载PDF
Correlation between the gut microbiome and neurodegenerative diseases:a review of metagenomics evidence 被引量:1
11
作者 Xiaoyan Liu Yi Liu +7 位作者 Junlin Liu Hantao Zhang Chaofan Shan Yinglu Guo Xun Gong Mengmeng Cui Xiubin Li Min Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期833-845,共13页
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis.As a contributing factor,microbiota dysbiosis always occurs in... A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis.As a contributing factor,microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases,such as Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota’s diverse microorganisms,and for both neuroimmune and neuroendocrine systems.Here,we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases,with an emphasis on multi-omics studies and the gut virome.The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated.Finally,we discuss the role of diet,prebiotics,probiotics,postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases. 展开更多
关键词 biomarker diet pattern gut microbiota gut-brain axis METAGENOMICS mitochondrial dysfunction multi-omics neurodegenerative disease NEUROINFLAMMATION probiotic
下载PDF
适宜运动与过度训练调控肠道功能和肠-脑轴的作用机制
12
作者 余锋 贾芳芳 +2 位作者 徐帅 汪君民 王阳春 《上海体育大学学报》 北大核心 2024年第3期26-35,48,共11页
对运动介导肠道与大脑联络的相关文献进行综述,分析适宜运动与过度训练对肠道功能和肠-脑轴之间神经传导及生物信号分子的影响,以揭示其作用机制。发现:肠道与大脑之间关系密切,肠-脑轴之间的双向神经联系和相关生物信号分子是实现肠道... 对运动介导肠道与大脑联络的相关文献进行综述,分析适宜运动与过度训练对肠道功能和肠-脑轴之间神经传导及生物信号分子的影响,以揭示其作用机制。发现:肠道与大脑之间关系密切,肠-脑轴之间的双向神经联系和相关生物信号分子是实现肠道与大脑之间对话的媒介。运动可通过调控肠道与大脑之间的神经联系和相关生物分子影响肠-脑轴,介导肠道与大脑的健康及神经、精神疾病的转归。肠道微生物是实现肠-脑轴之间信息沟通的重要参与者,运动对肠道功能与肠-脑轴的调节可通过调控肠道微生态,及其介导的神经传导途径和生物信号分子的变化发挥终端效应,进而影响高级神经功能。不同强度的运动对肠道微生态及肠-脑轴的调节效应差异颇大,适宜运动和过度训练引起的干预结果截然不同。 展开更多
关键词 适宜运动 过度训练 肠道功能 肠-脑轴
下载PDF
Gut flora in multiple sclerosis:implications for pathogenesis and treatment
13
作者 Weiwei Zhang Ying Wang +2 位作者 Mingqin Zhu Kangding Liu Hong-Liang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1480-1488,共9页
Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow d... Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow down disease progression,there is no cure for multiple sclerosis.The gut-brain axis refers to complex communications between the gut flo ra and the immune,nervous,and endocrine systems,which bridges the functions of the gut and the brain.Disruptions in the gut flora,termed dys biosis,can lead to systemic inflammation,leaky gut syndrome,and increased susceptibility to infections.The pathogenesis of multiple sclerosis involves a combination of genetic and environmental factors,and gut flora may play a pivotal role in regulating immune responses related to multiple scle rosis.To develop more effective therapies for multiple scle rosis,we should further uncover the disease processes involved in multiple sclerosis and gain a better understanding of the gut-brain axis.This review provides an overview of the role of the gut flora in multiple scle rosis. 展开更多
关键词 gut flora gut-brain axis multiple sclerosis PATHOGENESIS treatment
下载PDF
Gut microbial regulation of innate and adaptive immunity after traumatic brain injury
14
作者 Marta Celorrio Kirill Shumilov Stuart H.Friess 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期272-276,共5页
Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension,hypoxia,intracranial hypertension,and detrimental inflammation.However,the imperative... Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension,hypoxia,intracranial hypertension,and detrimental inflammation.However,the imperative to balance multiple clinical concerns simultaneously often results in therapeutic strategies targeted to address one clinical concern causing unintended effects in other remote organ systems.Recently the bidirectional communication between the gastrointestinal tract and the brain has been shown to influence both the central nervous system and gastrointestinal tract homeostasis in health and disease.A critical component of this axis is the microorganisms of the gut known as the gut microbiome.Changes in gut microbial populations in the setting of central nervous system disease,including traumatic brain injury,have been reported in both humans and experimental animal models and can be further disrupted by off-target effects of patient care.In this review article,we will explore the important role gut microbial populations play in regulating brain-resident and peripheral immune cell responses after traumatic brain injury.We will discuss the role of bacterial metabolites in gut microbial regulation of neuroinflammation and their potential as an avenue for therapeutic intervention in the setting of traumatic brain injury. 展开更多
关键词 gut microbiome gut microbiota gut-brain axis macrophage MICROGLIA MONOCYTE NEUROINFLAMMATION short-chain fatty acids T cell traumatic brain injury
下载PDF
Update on the gut microbiome in health and diseases
15
作者 Maurizio Salvadori Giuseppina Rosso 《World Journal of Methodology》 2024年第1期18-32,共15页
The Human Microbiome Project,Earth Microbiome Project,and next-generation sequencing have advanced novel genome association,host genetic linkages,and pathogen identification.The microbiome is the sum of the microbes,t... The Human Microbiome Project,Earth Microbiome Project,and next-generation sequencing have advanced novel genome association,host genetic linkages,and pathogen identification.The microbiome is the sum of the microbes,their genetic information,and their ecological niche.This study will describe how millions of bacteria in the gut affect the human body in health and disease.The gut microbiome changes in relation with age,with an increase in Bacteroidetes and Firmicutes.Host and environmental factors affecting the gut microbiome are diet,drugs,age,smoking,exercise,and host genetics.In addition,changes in the gut microbiome may affect the local gut immune system and systemic immune system.In this study,we discuss how the microbiome may affect the metabolism of healthy subjects or may affect the pathogenesis of metabolism-generating metabolic diseases.Due to the high number of publications on the argument,from a methodologically point of view,we decided to select the best papers published in referred journals in the last 3 years.Then we selected the previously published papers.The major goals of our study were to elucidate which microbiome and by which pathways are related to healthy and disease conditions. 展开更多
关键词 Gut microbiome DYSBIOSIS Pathobionts gut-brain axis Heart-brain axis Metabolic diseases Omics techniques
下载PDF
糖类与甜味剂的肠-脑轴效应研究进展及评估方法分析
16
作者 史清照 刘富强 +10 位作者 张启东 范武 柴国璧 毛健 王焕丽 姬凌波 冯伟华 宗国浩 曹培健 卢鹏 谢剑平 《食品科学》 EI CAS CSCD 北大核心 2024年第9期322-329,共8页
尽管甜味剂能够提供类似糖类的风味感受和远高于糖类的甜味强度,但仍旧不能完全替代糖类所带来的满足感,明确该现象的生物学机制对于完善甜味剂的功能评估体系和指导甜味剂的创新发展方向都具有十分重要的意义。本文系统综述了糖类与甜... 尽管甜味剂能够提供类似糖类的风味感受和远高于糖类的甜味强度,但仍旧不能完全替代糖类所带来的满足感,明确该现象的生物学机制对于完善甜味剂的功能评估体系和指导甜味剂的创新发展方向都具有十分重要的意义。本文系统综述了糖类与甜味剂引发的动物行为偏好差异、动物脑区活动差异和肠-脑轴神经激活模式差异3个方面的研究进展,揭示了大脑可以辨别糖和甜味剂,从而产生个体行为偏好差异的深层原因,提出动物行为学、脑区神经活动和关键受体激活能力可用于评估甜味剂肠-脑轴效应,可为甜味剂领域的创新发展提供参考。 展开更多
关键词 糖类 甜味剂 肠-脑轴 行为学偏好 神经活动
下载PDF
中医肠脑同治理论与神经影像学视角下的精神分裂症肠脑轴
17
作者 赵旭 白冰 +4 位作者 赵晨雨 王瀚 王丰 曹丹娜 赵永厚 《中医药学报》 CAS 2024年第5期10-16,共7页
精神分裂症是一种复杂的精神疾病,其发病机制尚未完全阐明。近年来,肠道微生物群与大脑之间的双向互动,即“肠脑轴”引起了广泛关注。中医学“肠脑同治”理论与肠脑轴概念相似,强调肠道与大脑的相互作用及其对健康的影响。本文综述了肠... 精神分裂症是一种复杂的精神疾病,其发病机制尚未完全阐明。近年来,肠道微生物群与大脑之间的双向互动,即“肠脑轴”引起了广泛关注。中医学“肠脑同治”理论与肠脑轴概念相似,强调肠道与大脑的相互作用及其对健康的影响。本文综述了肠脑轴的基本概念、中医肠脑同治理论的内涵,同时探讨了神经影像学技术在揭示肠道菌群与大脑结构、功能相关性方面的研究成果。综合分析表明,精神分裂症患者的肠道菌群组成异常,且与大脑结构和功能密切相关。肠道微生物群可能通过免疫、神经、内分泌等多种途径参与精神分裂症的发病过程。中医药治疗精神分裂症的优势在于调节肠道菌群、修复肠脑轴紊乱,进而缓解精神症状。深入挖掘中医肠脑同治理论的内涵,借助神经影像学等现代技术,有望为精神分裂症的诊断、治疗带来新的突破。 展开更多
关键词 精神分裂症 肠脑轴 肠道微生物群 中医肠脑同治 神经影像学
下载PDF
The role of gut microbiota in the gut-brain axis:current challenges and perspectives 被引量:31
18
作者 Xiao Chen Roshan D’Souza Seong-Tshool Hong 《Protein & Cell》 SCIE CSCD 2013年第6期403-414,共12页
Brain and the gastrointestinal(GI)tract are intimately con-nected to form a bidirectional neurohumoral communica-tion system.The communication between gut and brain,knows as the gut-brain axis,is so well established t... Brain and the gastrointestinal(GI)tract are intimately con-nected to form a bidirectional neurohumoral communica-tion system.The communication between gut and brain,knows as the gut-brain axis,is so well established that the functional status of gut is always related to the condi-tion of brain.The researches on the gut-brain axis were traditionally focused on the psychological status affecting the function of the GI tract.However,recent evidences showed that gut microbiota communicates with the brain via the gut-brain axis to modulate brain development and behavioral phenotypes.These recent fi ndings on the new role of gut microbiota in the gut-brain axis implicate that gut microbiota could associate with brain functions as well as neurological diseases via the gut-brain axis.To elucidate the role of gut microbiota in the gut-brain axis,precise identification of the composition of microbes constituting gut microbiota is an essential step.However,identifi cation of microbes constituting gut microbiota has been the main technological challenge currently due to massive amount of intestinal microbes and the diffi culties in culture of gut microbes.Current methods for identifi ca-tion of microbes constituting gut microbiota are depend-ent on omics analysis methods by using advanced high tech equipment.Here,we review the association of gut microbiota with the gut-brain axis,including the pros and cons of the current high throughput methods for identi-fi cation of microbes constituting gut microbiota to eluci-date the role of gut microbiota in the gut-brain axis. 展开更多
关键词 gut microbiota the gut-brain axis central nervous system high throughput methods next-generation sequencings
原文传递
Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice 被引量:44
19
作者 Xueqin Yang Dongke Yu +2 位作者 Li Xue Hui Li Junrong Du 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2020年第3期475-487,共13页
ProBiotic-4 is a probiotic preparation composed of Bifidobacterium lactis,Lactobacillus casei,Bifidobacterium bifidum,and Lactobacillus acidophilus.This study aims to investigate the effects of ProBiotic-4 on the micr... ProBiotic-4 is a probiotic preparation composed of Bifidobacterium lactis,Lactobacillus casei,Bifidobacterium bifidum,and Lactobacillus acidophilus.This study aims to investigate the effects of ProBiotic-4 on the microbiota-gut-brain axis and cognitive deficits,and to explore the underlying molecular mechanism using senescence-accelerated mouse prone 8(SAMP8)mice.ProBiotic-4 was orally administered to 9-month-old SAMP8 mice for 12 weeks.We observed that ProBiotic-4 significantly improved the memory deficits,cerebral neuronal and synaptic injuries,glial activation,and microbiota composition in the feces and brains of aged SAMP8 mice.ProBiotic-4 substantially attenuated aging-related disruption of the intestinal barrier and blood-brain barrier,decreased interleukin-6 and tumor necrosis factor-αat both mRNA and protein levels,reduced plasma and cerebral lipopolysaccharide(LPS)concentration,toll-like receptor 4(TLR4)expression,and nuclear factor-κB(NF-κB)nuclear translocation in the brain.In addition,not only did ProBiotic-4 significantly decreased the levels ofγ-H2 AX,8-hydroxydesoxyguanosine,and retinoic-acid-inducible gene-I(RIG-I),it also abrogated RIG-I multimerization in the brain.These findings suggest that targeting gut microbiota with probiotics may have a therapeutic potential for the deficits of the microbiota-gut-brain axis and cognitive function in aging,and that its mechanism is associated with inhibition of both TLR4-and RIG-I-mediated NF-κB signaling pathway and inflammatory responses. 展开更多
关键词 Microbiota-gut-brain AXIS Cognitive decline TLR4 RIG-I NF-κB PROBIOTICS SAMP8 mice
原文传递
基于脑-肠轴学说探讨中医学防治阿尔茨海默病的理论基础
20
作者 邹玉凤 牟柏余 +1 位作者 陈靖 王卉 《山西中医药大学学报》 2024年第1期100-103,108,共5页
阿尔茨海默病(AD)作为一种进展性脑部疾病,目前无法治愈,随着时间的推移,病情会逐渐加重。AD发病率日益增加,导致当今社会人们生活质量严重下降,患者及其家属的幸福感降低。现代医学从脑-肠轴理论出发,提示微生物-脑-肠轴是大脑与胃肠... 阿尔茨海默病(AD)作为一种进展性脑部疾病,目前无法治愈,随着时间的推移,病情会逐渐加重。AD发病率日益增加,导致当今社会人们生活质量严重下降,患者及其家属的幸福感降低。现代医学从脑-肠轴理论出发,提示微生物-脑-肠轴是大脑与胃肠的双向调节通道,为中枢神经系统的治疗打开了一个新的突破口。脑-肠轴是一个由脑、肠、肠道微生物构成的双向通路,主要由神经、免疫、内分泌和肠道菌群等上行通路介导肠道对脑进行调节作用。大脑与胃肠道的关系日益密切,许多学者将现代医学的脑-肠轴学说与中医的脑肠相通理论相结合,越来越多地应用到临床治疗之中。通过脑-肠轴学说,从阐述胃肠道和中枢神经系统的生理、病理、经络循行、气血运化等角度出发,在中医经典理论中梳理挖掘出AD与各脏腑之间脑肠相通的理论内涵,为临床治疗提供理论依据。 展开更多
关键词 阿尔茨海默病 痴呆 脑-肠轴 脑肠相通
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部