期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rational surface charge engineering of haloalkane dehalogenase for boosting the enzymatic performance in organic solvent solutions
1
作者 Yin Wu Yan Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期276-285,共10页
Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy... Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy to improve the catalytic performance of haloalkane dehalogenase DhaA in OSs based on the energetic analysis of substrate binding to the DhaA surface.Several variants with enhanced OS resistance were obtained by replacing negative charged residues on the surface with positive charged residue(Arg).Particularly,a four-substitution variant E16R/E93R/E121R/E257R exhibited the best catalytic performance(five-fold improvement in OS resistance and seven-fold half-life increase in 40%(vol)dimethylsulfoxide).As a result,the overall catalytic performance of the variant could be at least 26 times higher than the wild-type DhaA.Fluorescence spectroscopy and molecular dynamics simulation studies revealed that the residue substitution mainly enhanced OS resistance from four aspects:(a)improved the overall structural stability,(b)increased the hydrophobicity of the local microenvironment around the catalytic triad,(c)enriched the hydrophobic substrate around the enzyme molecule,and(d)lowered the contact frequency between OS molecules and the catalytic triad.Our findings validate that computationaided surface charge engineering is an effective and ingenious rational strategy for tailoring enzyme performance in OSs. 展开更多
关键词 Surface charge engineering Organic solvent resistance Molecular dynamics simulation Haloalkane dehalogenase
下载PDF
Interaction Between 1,2,3-Trichloropropane and Haloalkane Dehalogenase LinB
2
作者 SUN Chia-chung 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2009年第4期556-559,共4页
The haloalkane dehalogenase LinB from Sphingomonas paucimobills UT26 was found to transform the 1,2,3-trichloropropane(TCP) into inorganic halide ions and 2,3-dichloro-1-propanol although the catalytic activity is v... The haloalkane dehalogenase LinB from Sphingomonas paucimobills UT26 was found to transform the 1,2,3-trichloropropane(TCP) into inorganic halide ions and 2,3-dichloro-1-propanol although the catalytic activity is very low(Kcat=0.005 s^-1).In this study,molecular dynamics simulation and docking studies were performed to investigate the binding of TCP to LinB.The docking results indicate that LinB does not restrict TCP to be bound productively in the active site and the water-mediated inhibition occurs in the process of TCP interacting with LinB.The residues Ile134,Leu150,Phe154,Pro208,and Ile211 located on the cap domain are potential targets for mutagenesis researches. 展开更多
关键词 Haloalkane dehalogenase 1 2 3-Trichloropropane DOCKING Molecular dynamics simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部