An innovative stormwater master plan based on low impact development LID is proposed.Unlike the traditional urban drainage plan this plan employs a sustainable stormwater management approach in communities utilizing L...An innovative stormwater master plan based on low impact development LID is proposed.Unlike the traditional urban drainage plan this plan employs a sustainable stormwater management approach in communities utilizing LID practices to reduce runoff and pollution load. An integrated hydraulic model which combines the traditional drainage sewer system with LID practices is adopted to assess the master plan.Through a long-term continuous simulation for 20 years the results reveal that the runoff volume will be reduced by over 80% following full implementation of this plan. Combining with the local conditions technical guidelines are established to provide assistance in implementing the stormwater master plan. Bioretention facilities for three main roads are constructed and other areas of development are being implemented sequentially under the guidance of the plan. This project provides an alternative method of stormwater management through the implementation of LID and it acts as a good example for other developing districts in China.展开更多
Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, a_nd xeris_caping can co_ntrol stormwater runoff, supply non-potable water, and landscape open space.TillS study e...Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, a_nd xeris_caping can co_ntrol stormwater runoff, supply non-potable water, and landscape open space.TillS study examines a hybrid system (HS) that combines LID technologies with a centralized water system to lessen the burden on a conventional system (CS). CS is defined as the stormwater collection and water supply infrastructure, and the conventional landscaping choices in the City of Atlanta. The study scope is limited to five single-family residential zones (SFZs), classified R-1 through R-5, and four multi-family residential zones (MFZs), classified RG-2 through RG-5. Population density increases from 0.4 (R-1) to 62.2 (RG-5) persons per 1,000 m2. We performed a life cycle assessment (LCA) comparison of CS and HS using TRACI 2.1 to simulate impacts on the ecosystem, human health, and natural resources. We quantified the impact of freshwater consumption using the freshwater ecosystem impact (FEI) indicator. Test results indicate that HS has a higher LCA single score than CS in zones with a low population density; however, the difference becomes negligible as population density increases. Incorporating LID in SFZs and MFZs can reduce potable water use by an average of 50%. and 25%,respectively.; however, water savings are negligible in zones with high population density (i.e., RG-5) due to the diminished surface area per capitaavailable for LID technoogies. The results demonstrate that LID technologies effectively reduce outdoor water demand and therefore would be a good choice to decrease the water consumption impact in the City of Atlanta.展开更多
Australia has developed extensive policies and guidelines for the management of its water. The City of Salisbury, located within metropolitan Adelaide, South Australia, developed rapidly through urbanisation from the ...Australia has developed extensive policies and guidelines for the management of its water. The City of Salisbury, located within metropolitan Adelaide, South Australia, developed rapidly through urbanisation from the 1970s. Water sensitive urban design principles were adopted to maximise the use of the increased rim-off generated by urbanisation and ameliorate flood risk. Managed aquifer recharge was introduced for storing remediated low-salinity stormwater by aquifer storage and recovery (ASR) in a brackish aquiter for subsequent lrngatlon. Ibis paper outlines now a municipal government has progressively adopted principles of Water Sensitive Urban Design during its development within a framework of evolving national water policies. Salisbury's success with stormwater harvesting led to the formation of a pioneering w aterbusiness that includes linking projects from nine sites to provide a non-potable supply of 5 ×10^6 m^3 year. These installations hosted a number of applied research projects addressing well configuration, water quality, reliability and economics and facilitated the evaluation of its system as a potential potable water source. The evaluation showed that while untreated stonnwater contained contaminants, subsurface storage and end-use controls were sufficient to make recovered water sale for public open space irrigation, and with chlorination acceptable lbr third pipe supplies. Drinking water quality could be achieved by adding microfiltration, disinfection with UV and chlorination. The costs that would need to be expended to achieve drinking water safety standards were found to be considerably less than the cost of establishing dual pipe distribution systems. The full cost of supply was determined to be AUD$1.57 m " for non-potable water for pubhc open space lrngatlon much cheaper than mares water, AUD $3.45 m at that time. Producing and storing potable water was found to cost AUDS1.96 to $2.24 m .展开更多
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2010BAK69B16)
文摘An innovative stormwater master plan based on low impact development LID is proposed.Unlike the traditional urban drainage plan this plan employs a sustainable stormwater management approach in communities utilizing LID practices to reduce runoff and pollution load. An integrated hydraulic model which combines the traditional drainage sewer system with LID practices is adopted to assess the master plan.Through a long-term continuous simulation for 20 years the results reveal that the runoff volume will be reduced by over 80% following full implementation of this plan. Combining with the local conditions technical guidelines are established to provide assistance in implementing the stormwater master plan. Bioretention facilities for three main roads are constructed and other areas of development are being implemented sequentially under the guidance of the plan. This project provides an alternative method of stormwater management through the implementation of LID and it acts as a good example for other developing districts in China.
基金Acknowledgements This research was sponsored by the Brook Byers Institute for Sustainable Systems, Hightower Chair, and the Georgia Research Alliance at the Georgia Institute of Technology. This work was also supported by a grant for "Resilient Interdependent Infrastructure Processes and Systems (RIPS) Type 2: Participatory Modeling of Complex Urban Infrastructure Systems (Model Urban SysTems)," (#0836046) from National Science Foundation, Division of Emerging Frontiers in Research and Innovations (EFRI). The authors also acknowledge the support of Crittenden and Associates.
文摘Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, a_nd xeris_caping can co_ntrol stormwater runoff, supply non-potable water, and landscape open space.TillS study examines a hybrid system (HS) that combines LID technologies with a centralized water system to lessen the burden on a conventional system (CS). CS is defined as the stormwater collection and water supply infrastructure, and the conventional landscaping choices in the City of Atlanta. The study scope is limited to five single-family residential zones (SFZs), classified R-1 through R-5, and four multi-family residential zones (MFZs), classified RG-2 through RG-5. Population density increases from 0.4 (R-1) to 62.2 (RG-5) persons per 1,000 m2. We performed a life cycle assessment (LCA) comparison of CS and HS using TRACI 2.1 to simulate impacts on the ecosystem, human health, and natural resources. We quantified the impact of freshwater consumption using the freshwater ecosystem impact (FEI) indicator. Test results indicate that HS has a higher LCA single score than CS in zones with a low population density; however, the difference becomes negligible as population density increases. Incorporating LID in SFZs and MFZs can reduce potable water use by an average of 50%. and 25%,respectively.; however, water savings are negligible in zones with high population density (i.e., RG-5) due to the diminished surface area per capitaavailable for LID technoogies. The results demonstrate that LID technologies effectively reduce outdoor water demand and therefore would be a good choice to decrease the water consumption impact in the City of Atlanta.
文摘Australia has developed extensive policies and guidelines for the management of its water. The City of Salisbury, located within metropolitan Adelaide, South Australia, developed rapidly through urbanisation from the 1970s. Water sensitive urban design principles were adopted to maximise the use of the increased rim-off generated by urbanisation and ameliorate flood risk. Managed aquifer recharge was introduced for storing remediated low-salinity stormwater by aquifer storage and recovery (ASR) in a brackish aquiter for subsequent lrngatlon. Ibis paper outlines now a municipal government has progressively adopted principles of Water Sensitive Urban Design during its development within a framework of evolving national water policies. Salisbury's success with stormwater harvesting led to the formation of a pioneering w aterbusiness that includes linking projects from nine sites to provide a non-potable supply of 5 ×10^6 m^3 year. These installations hosted a number of applied research projects addressing well configuration, water quality, reliability and economics and facilitated the evaluation of its system as a potential potable water source. The evaluation showed that while untreated stonnwater contained contaminants, subsurface storage and end-use controls were sufficient to make recovered water sale for public open space irrigation, and with chlorination acceptable lbr third pipe supplies. Drinking water quality could be achieved by adding microfiltration, disinfection with UV and chlorination. The costs that would need to be expended to achieve drinking water safety standards were found to be considerably less than the cost of establishing dual pipe distribution systems. The full cost of supply was determined to be AUD$1.57 m " for non-potable water for pubhc open space lrngatlon much cheaper than mares water, AUD $3.45 m at that time. Producing and storing potable water was found to cost AUDS1.96 to $2.24 m .