期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Development, assessment and implementation of integrated stormwater management plan: a case study in Shanghai 被引量:6
1
作者 李田 张伟 黄俊杰 《Journal of Southeast University(English Edition)》 EI CAS 2014年第2期206-211,共6页
An innovative stormwater master plan based on low impact development LID is proposed.Unlike the traditional urban drainage plan this plan employs a sustainable stormwater management approach in communities utilizing L... An innovative stormwater master plan based on low impact development LID is proposed.Unlike the traditional urban drainage plan this plan employs a sustainable stormwater management approach in communities utilizing LID practices to reduce runoff and pollution load. An integrated hydraulic model which combines the traditional drainage sewer system with LID practices is adopted to assess the master plan.Through a long-term continuous simulation for 20 years the results reveal that the runoff volume will be reduced by over 80% following full implementation of this plan. Combining with the local conditions technical guidelines are established to provide assistance in implementing the stormwater master plan. Bioretention facilities for three main roads are constructed and other areas of development are being implemented sequentially under the guidance of the plan. This project provides an alternative method of stormwater management through the implementation of LID and it acts as a good example for other developing districts in China. 展开更多
关键词 stormwater master plan low impact development rainwater harvesting STORMWATER MANAGEMENT practices hydraulic model
下载PDF
Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the City of Atlanta, Georgia 被引量:1
2
作者 Hyunju Jeong Osvaldo A. Broesicke +2 位作者 Bob Drew Duo Li John C. Crittenden 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第6期3-15,共13页
Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, a_nd xeris_caping can co_ntrol stormwater runoff, supply non-potable water, and landscape open space.TillS study e... Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, a_nd xeris_caping can co_ntrol stormwater runoff, supply non-potable water, and landscape open space.TillS study examines a hybrid system (HS) that combines LID technologies with a centralized water system to lessen the burden on a conventional system (CS). CS is defined as the stormwater collection and water supply infrastructure, and the conventional landscaping choices in the City of Atlanta. The study scope is limited to five single-family residential zones (SFZs), classified R-1 through R-5, and four multi-family residential zones (MFZs), classified RG-2 through RG-5. Population density increases from 0.4 (R-1) to 62.2 (RG-5) persons per 1,000 m2. We performed a life cycle assessment (LCA) comparison of CS and HS using TRACI 2.1 to simulate impacts on the ecosystem, human health, and natural resources. We quantified the impact of freshwater consumption using the freshwater ecosystem impact (FEI) indicator. Test results indicate that HS has a higher LCA single score than CS in zones with a low population density; however, the difference becomes negligible as population density increases. Incorporating LID in SFZs and MFZs can reduce potable water use by an average of 50%. and 25%,respectively.; however, water savings are negligible in zones with high population density (i.e., RG-5) due to the diminished surface area per capitaavailable for LID technoogies. The results demonstrate that LID technologies effectively reduce outdoor water demand and therefore would be a good choice to decrease the water consumption impact in the City of Atlanta. 展开更多
关键词 Life cycle assessment (LCA) Low impact development (LID) Bioretention area Rainwater harvesting Xeriscaping
原文传递
Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia
3
作者 John C. Radcliffe Declan Page +1 位作者 Bruce Naumann Peter Dillon 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第4期63-72,共10页
Australia has developed extensive policies and guidelines for the management of its water. The City of Salisbury, located within metropolitan Adelaide, South Australia, developed rapidly through urbanisation from the ... Australia has developed extensive policies and guidelines for the management of its water. The City of Salisbury, located within metropolitan Adelaide, South Australia, developed rapidly through urbanisation from the 1970s. Water sensitive urban design principles were adopted to maximise the use of the increased rim-off generated by urbanisation and ameliorate flood risk. Managed aquifer recharge was introduced for storing remediated low-salinity stormwater by aquifer storage and recovery (ASR) in a brackish aquiter for subsequent lrngatlon. Ibis paper outlines now a municipal government has progressively adopted principles of Water Sensitive Urban Design during its development within a framework of evolving national water policies. Salisbury's success with stormwater harvesting led to the formation of a pioneering w aterbusiness that includes linking projects from nine sites to provide a non-potable supply of 5 ×10^6 m^3 year. These installations hosted a number of applied research projects addressing well configuration, water quality, reliability and economics and facilitated the evaluation of its system as a potential potable water source. The evaluation showed that while untreated stonnwater contained contaminants, subsurface storage and end-use controls were sufficient to make recovered water sale for public open space irrigation, and with chlorination acceptable lbr third pipe supplies. Drinking water quality could be achieved by adding microfiltration, disinfection with UV and chlorination. The costs that would need to be expended to achieve drinking water safety standards were found to be considerably less than the cost of establishing dual pipe distribution systems. The full cost of supply was determined to be AUD$1.57 m " for non-potable water for pubhc open space lrngatlon much cheaper than mares water, AUD $3.45 m at that time. Producing and storing potable water was found to cost AUDS1.96 to $2.24 m . 展开更多
关键词 Managed Aquifer Recharge (MAR) Stormwater harvesting Water recycling drinking water Low impact development Water sensitive urban design
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部