期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Fortifying Healthcare Data Security in the Cloud:A Comprehensive Examination of the EPM-KEA Encryption Protocol
1
作者 Umi Salma Basha Shashi Kant Gupta +2 位作者 Wedad Alawad SeongKi Kim Salil Bharany 《Computers, Materials & Continua》 SCIE EI 2024年第5期3397-3416,共20页
A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is stil... A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a majorconcern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentialityand integrity of healthcare data in the cloud. The computational overhead of encryption technologies could leadto delays in data access and processing rates. To address these challenges, we introduced the Enhanced ParallelMulti-Key Encryption Algorithm (EPM-KEA), aiming to bolster healthcare data security and facilitate the securestorage of critical patient records in the cloud. The data was gathered from two categories Authorization forHospital Admission (AIH) and Authorization for High Complexity Operations.We use Z-score normalization forpreprocessing. The primary goal of implementing encryption techniques is to secure and store massive amountsof data on the cloud. It is feasible that cloud storage alternatives for protecting healthcare data will become morewidely available if security issues can be successfully fixed. As a result of our analysis using specific parametersincluding Execution time (42%), Encryption time (45%), Decryption time (40%), Security level (97%), and Energyconsumption (53%), the system demonstrated favorable performance when compared to the traditional method.This suggests that by addressing these security concerns, there is the potential for broader accessibility to cloudstorage solutions for safeguarding healthcare data. 展开更多
关键词 Cloud computing healthcare data security enhanced parallel multi-key encryption algorithm(EPM-KEA)
下载PDF
Securing Healthcare Data in IoMT Network Using Enhanced Chaos Based Substitution and Diffusion
2
作者 Musheer Ahmad Reem Ibrahim Alkanhel +3 位作者 Naglaa FSoliman Abeer D.Algarni Fathi E.Abd El-Samie Walid El-Shafai 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2361-2380,共20页
Patient privacy and data protection have been crucial concerns in Ehealthcare systems for many years.In modern-day applications,patient data usually holds clinical imagery,records,and other medical details.Lately,the ... Patient privacy and data protection have been crucial concerns in Ehealthcare systems for many years.In modern-day applications,patient data usually holds clinical imagery,records,and other medical details.Lately,the Internet of Medical Things(IoMT),equipped with cloud computing,has come out to be a beneficial paradigm in the healthcare field.However,the openness of networks and systems leads to security threats and illegal access.Therefore,reliable,fast,and robust security methods need to be developed to ensure the safe exchange of healthcare data generated from various image sensing and other IoMT-driven devices in the IoMT network.This paper presents an image protection scheme for healthcare applications to protect patients’medical image data exchanged in IoMT networks.The proposed security scheme depends on an enhanced 2D discrete chaotic map and allows dynamic substitution based on an optimized highly-nonlinear S-box and diffusion to gain an excellent security performance.The optimized S-box has an excellent nonlinearity score of 112.The new image protection scheme is efficient enough to exhibit correlation values less than 0.0022,entropy values higher than 7.999,and NPCR values around 99.6%.To reveal the efficacy of the scheme,several comparison studies are presented.These comparison studies reveal that the novel protection scheme is robust,efficient,and capable of securing healthcare imagery in IoMT systems. 展开更多
关键词 Secure communication healthcare data encryption Internet of Medical Things(IoMT) discrete chaotic map substitution box(S-box)
下载PDF
Metaheuristic Clustering Protocol for Healthcare DataCollection in MobileWireless Multimedia Sensor Networks 被引量:4
3
作者 G G.Kadiravan P.Sujatha +5 位作者 T.Asvany R.Punithavathi Mohamed Elhoseny Irina V.Pustokhina Denis A.Pustokhin K.Shankar 《Computers, Materials & Continua》 SCIE EI 2021年第3期3215-3231,共17页
Nowadays,healthcare applications necessitate maximum volume of medical data to be fed to help the physicians,academicians,pathologists,doctors and other healthcare professionals.Advancements in the domain of Wireless ... Nowadays,healthcare applications necessitate maximum volume of medical data to be fed to help the physicians,academicians,pathologists,doctors and other healthcare professionals.Advancements in the domain of Wireless Sensor Networks(WSN)andMultimediaWireless Sensor Networks(MWSN)are tremendous.M-WMSN is an advanced form of conventional Wireless Sensor Networks(WSN)to networks that use multimedia devices.When compared with traditional WSN,the quantity of data transmission in M-WMSN is significantly high due to the presence of multimedia content.Hence,clustering techniques are deployed to achieve low amount of energy utilization.The current research work aims at introducing a new Density Based Clustering(DBC)technique to achieve energy efficiency inWMSN.The DBC technique is mainly employed for data collection in healthcare environment which primarily depends on three input parameters namely remaining energy level,distance,and node centrality.In addition,two static data collector points called Super Cluster Head(SCH)are placed,which collects the data from normal CHs and forwards it to the Base Station(BS)directly.SCH supports multi-hop data transmission that assists in effectively balancing the available energy.Adetailed simulation analysiswas conducted to showcase the superior performance of DBC technique and the results were examined under diverse aspects.The simulation outcomes concluded that the proposed DBC technique improved the network lifetime to a maximum of 16,500 rounds,which is significantly higher compared to existing methods. 展开更多
关键词 Smart sensor environment healthcare data MULTIMEDIA big data processing CLUSTERING MOBILITY energy efficiency
下载PDF
Privacy-Preserving Healthcare and Medical Data Collaboration Service System Based on Blockchain and Federated Learning
4
作者 Fang Hu Siyi Qiu +3 位作者 Xiaolian Yang ChaoleiWu Miguel Baptista Nunes Hui Chen 《Computers, Materials & Continua》 SCIE EI 2024年第8期2897-2915,共19页
As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in dat... As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in data fusion,low reliability of data storage,low effectiveness of data sharing,etc.To guarantee the service quality of data collaboration,this paper presents a privacy-preserving Healthcare and Medical Data Collaboration Service System combining Blockchain with Federated Learning,termed FL-HMChain.This system is composed of three layers:Data extraction and storage,data management,and data application.Focusing on healthcare and medical data,a healthcare and medical blockchain is constructed to realize data storage,transfer,processing,and access with security,real-time,reliability,and integrity.An improved master node selection consensus mechanism is presented to detect and prevent dishonest behavior,ensuring the overall reliability and trustworthiness of the collaborative model training process.Furthermore,healthcare and medical data collaboration services in real-world scenarios have been discussed and developed.To further validate the performance of FL-HMChain,a Convolutional Neural Network-based Federated Learning(FL-CNN-HMChain)model is investigated for medical image identification.This model achieves better performance compared to the baseline Convolutional Neural Network(CNN),having an average improvement of 4.7%on Area Under Curve(AUC)and 7%on Accuracy(ACC),respectively.Furthermore,the probability of privacy leakage can be effectively reduced by the blockchain-based parameter transfer mechanism in federated learning between local and global models. 展开更多
关键词 Blockchain technique federated learning healthcare and medical data collaboration service privacy preservation
下载PDF
Healthcare data analytics:using a metadata annotation approach for integrating electronic hospital records 被引量:7
5
作者 Boyi Xu Ke Xu +3 位作者 LiuLiu Fu Ling Li Weiwei Xin Hongming Cai 《Journal of Management Analytics》 EI 2016年第2期136-151,共16页
The data in electronic medical records(EMR)are complex in structure.They are independent,yet related to each other.In order to improve information access through the use of EMR,annotating work on these data is necessa... The data in electronic medical records(EMR)are complex in structure.They are independent,yet related to each other.In order to improve information access through the use of EMR,annotating work on these data is necessary.The annotation on metadata,the resource data which contain a meta-model of the database,is the basis of the annotating work if a semi-automated or an automated annotating approach which aims at making the database more accessible is expected.In this study,a method has been proposed to transform the terms which cannot be matched directly by changing them literally but maintaining their semantics,and then annotating them indirectly.After the transforming work,a refinement method which is reducible to phrase sense disambiguation(PSD)is employed to ensure accuracy.A pilot study on a hospital database has been conducted to test the accuracy and effectiveness of the proposed method. 展开更多
关键词 healthcare data analytics metadata annotation linked open data SEMANTICS phrase sense disambiguation
原文传递
On Monetizing Personal Wearable Devices Data:A Blockchain-based Marketplace for Data Crowdsourcing and Federated Machine Learning in Healthcare
6
作者 Mohamed Emish Hari Kishore Chaparala +1 位作者 Zeyad Kelani Sean D.Young 《Artificial Intelligence Advances》 2022年第2期8-16,共9页
Machine learning advancements in healthcare have made data collected through smartphones and wearable devices a vital source of public health and medical insights.While wearable device data help to monitor,detect,and ... Machine learning advancements in healthcare have made data collected through smartphones and wearable devices a vital source of public health and medical insights.While wearable device data help to monitor,detect,and predict diseases and health conditions,some data owners hesitate to share such sensitive data with companies or researchers due to privacy concerns.Moreover,wearable devices have been recently available as commercial products;thus large,diverse,and representative datasets are not available to most researchers.In this article,the authors propose an open marketplace where wearable device users securely monetize their wearable device records by sharing data with consumers(e.g.,researchers)to make wearable device data more available to healthcare researchers.To secure the data transactions in a privacy-preserving manner,the authors use a decentralized approach using Blockchain and Non-Fungible Tokens(NFTs).To ensure data originality and integrity with secure validation,the marketplace uses Trusted Execution Environments(TEE)in wearable devices to verify the correctness of health data.The marketplace also allows researchers to train models using Federated Learning with a TEE-backed secure aggregation of data users may not be willing to share.To ensure user participation,we model incentive mechanisms for the Federated Learning-based and anonymized data-sharing approaches using NFTs.The authors also propose using payment channels and batching to reduce smart contact gas fees and optimize user profits.If widely adopted,it’s believed that TEE and Blockchain-based incentives will promote the ethical use of machine learning with validated wearable device data in healthcare and improve user participation due to incentives. 展开更多
关键词 Wearable devices data integrity data validation Federated learning Blockchain Trusted execution environment Health informatics healthcare data collection data monetization
下载PDF
Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification
7
作者 Firas Abedi Hayder M.A.Ghanimi +6 位作者 Abeer D.Algarni Naglaa F.Soliman Walid El-Shafai Ali Hashim Abbas Zahraa H.Kareem Hussein Muhi Hariz Ahmed Alkhayyat 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2791-2814,共24页
Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discoveri... Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning. 展开更多
关键词 Association rule mining data classification healthcare data machine learning parameter tuning data mining feature selection MLARMC-HDMS COA stochastic gradient descent Apriori algorithm
下载PDF
Classifying Big Medical Data through Bootstrap Decision Forest Using Penalizing Attributes
8
作者 V.Gowri V.Vijaya Chamundeeswari 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3675-3690,共16页
Decision forest is a well-renowned machine learning technique to address the detection and prediction problems related to clinical data.But,the tra-ditional decision forest(DF)algorithms have lower classification accu... Decision forest is a well-renowned machine learning technique to address the detection and prediction problems related to clinical data.But,the tra-ditional decision forest(DF)algorithms have lower classification accuracy and cannot handle high-dimensional feature space effectively.In this work,we pro-pose a bootstrap decision forest using penalizing attributes(BFPA)algorithm to predict heart disease with higher accuracy.This work integrates a significance-based attribute selection(SAS)algorithm with the BFPA classifier to improve the performance of the diagnostic system in identifying cardiac illness.The pro-posed SAS algorithm is used to determine the correlation among attributes and to select the optimum subset of feature space for learning and testing processes.BFPA selects the optimal number of learning and testing data points as well as the density of trees in the forest to realize higher prediction accuracy in classifying imbalanced datasets effectively.The effectiveness of the developed classifier is cautiously verified on the real-world database(i.e.,Heart disease dataset from UCI repository)by relating its enactment with many advanced approaches with respect to the accuracy,sensitivity,specificity,precision,and intersection over-union(IoU).The empirical results demonstrate that the intended classification approach outdoes other approaches with superior enactment regarding the accu-racy,precision,sensitivity,specificity,and IoU of 94.7%,99.2%,90.1%,91.1%,and 90.4%,correspondingly.Additionally,we carry out Wilcoxon’s rank-sum test to determine whether our proposed classifier with feature selection method enables a noteworthy enhancement related to other classifiers or not.From the experimental results,we can conclude that the integration of SAS and BFPA outperforms other classifiers recently reported in the literature. 展开更多
关键词 data classification decision forest feature selection healthcare data heart disease prediction penalizing attributes
下载PDF
Applying Apache Spark on Streaming Big Data for Health Status Prediction
9
作者 Ahmed Ismail Ebada Ibrahim Elhenawy +3 位作者 Chang-Won Jeong Yunyoung Nam Hazem Elbakry Samir Abdelrazek 《Computers, Materials & Continua》 SCIE EI 2022年第2期3511-3527,共17页
Big data applications in healthcare have provided a variety of solutions to reduce costs,errors,and waste.This work aims to develop a real-time system based on big medical data processing in the cloud for the predicti... Big data applications in healthcare have provided a variety of solutions to reduce costs,errors,and waste.This work aims to develop a real-time system based on big medical data processing in the cloud for the prediction of health issues.In the proposed scalable system,medical parameters are sent to Apache Spark to extract attributes from data and apply the proposed machine learning algorithm.In this way,healthcare risks can be predicted and sent as alerts and recommendations to users and healthcare providers.The proposed work also aims to provide an effective recommendation system by using streaming medical data,historical data on a user’s profile,and a knowledge database to make themost appropriate real-time recommendations and alerts based on the sensor’s measurements.This proposed scalable system works by tweeting the health status attributes of users.Their cloud profile receives the streaming healthcare data in real time by extracting the health attributes via a machine learning prediction algorithm to predict the users’health status.Subsequently,their status can be sent on demand to healthcare providers.Therefore,machine learning algorithms can be applied to stream health care data from wearables and provide users with insights into their health status.These algorithms can help healthcare providers and individuals focus on health risks and health status changes and consequently improve the quality of life. 展开更多
关键词 Big data streaming processing healthcare data machine learning IoT data processing Apache Spark
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部