期刊文献+
共找到21,610篇文章
< 1 2 250 >
每页显示 20 50 100
Interface property of dissimilar Ti-6Al-4V/AA1050 composite laminate made by non-equal channel lateral co-extrusion and heat treatment
1
作者 Juan Liao Mengmeng Tian Xin Xue 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期197-208,共12页
The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel la... The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel lateral co-extrusion process.The microstructural evolution and growth mechanism in the diffusion layer were discussed further to optimize the bonding quality by appropriately adjusting process parameters.Scanning electron microscopes(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD)were used to characterize interfacial diffusion layers.The shear test was used to determine the mechanical properties of the interfacial diffusion layer.The experimental results indicate that it is possible to co-extrusion Ti-6Al-4V/AA1050 compound profiles using non-equal channel lateral co-extrusion.Different heat treatment processes affect the thickness of the diffusion layer.When the temperature and time of heat treatment increase,the thickness of the reaction layers increases dramatically.Additionally,the shear strength of the Ti-6Al-4V/AA1050 composite interface is proportional to the diffusion layer thickness.It is observed that a medium interface thickness results in superior mechanical performance when compared to neither a greater nor a lesser interface thickness.Microstructural characterization of all heat treatments reveals that the only intermetallic compound observed in the diffusion layers is TiAl_(3).Due to the inter-diffusion of Ti and Al atoms,the TiAl_(3) layer grows primarily at AA1050/TiAl_(3) interfaces. 展开更多
关键词 Shear strength CO-EXTRUSION heat treatment Microstructure Intermetallic compounds
下载PDF
Effect of Heat Treatment on Microstructure and Mechanical Properties of Multiscale SiC_p Hybrid Reinforced 6061 Aluminum Matrix Composites
2
作者 吴健铭 许晓静 +3 位作者 ZHANG Xu LUO Yuntian LI Shuaidi HUANG Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期174-181,共8页
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp... The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively. 展开更多
关键词 aluminum matrix composites Si C particles multiscale hybrid enhancement heat treatment mechanical properties
原文传递
Effect of heat treatment on the microstructure and mechanical properties of a multidirectionally forged Mg-Gd-Y-Zn-Zr-Ag alloy 被引量:1
3
作者 Junkai Wang Chuming Liu +2 位作者 Shunong Jiang Yingchun Wan Zhiyong Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2042-2053,共12页
Multidirectional forging(MDF)was successfully applied to fabricate large-size Mg-Gd-Y-Zn-Zr-Ag alloy in this work and effects of T4,T5 and T6 treatments on the microstructure and mechanical properties of the as-forged... Multidirectional forging(MDF)was successfully applied to fabricate large-size Mg-Gd-Y-Zn-Zr-Ag alloy in this work and effects of T4,T5 and T6 treatments on the microstructure and mechanical properties of the as-forged alloy were analyzed.Results show that dynamic recrystallization(DRX)occurs and second phase particles precipitate along the grain boundary during the MDF process.After annealing treatment(T4),the volume fraction and size of dynamic precipitates slightly increase at a lower temperature(430℃)compared with those of MDFed sample,while they are dissolved into theα-Mg matrix at a higher temperature(450℃).At the meantime,short plate-shaped long-period stacking ordered(LPSO)phases are observed in the DRX grains of the MDFed sample and then dissolved into theα-Mg matrix during annealing at both temperatures.Typical basal texture is identified in the MDFed sample,but the basal pole tilts away from final forging direction and rare-earth texture component with<1121>orientation parallel to penultimate forging direction becomes visible after annealing.The T6 sample annealing at 430℃for 4 h and ageing at 200℃for 34 h exhibits the superior strength and ductility in this study.The ultimate tensile strength,tensile yield strength and elongation to failure,which is 455 MPa,308 MPa and 7.7%,respectively,are overall improved compared with the directly-aged(T5)sample.This paper provides a superior heat treatment schedule to manufacture high-performance large-scale Mg-Gd-Y-Zn-Zr-Ag components for industrial production. 展开更多
关键词 Mg-Gd-Y-Zn-Zr-Ag alloy Multidirectional forging Dynamic precipitation heat treatment Mechanical properties
下载PDF
Effect of heat treatment on microstructure,mechanical and tribological properties of in-situ (TiC+TiB)/TC4 composites by casting 被引量:1
4
作者 Bo-wen Zheng Shuai Chen +6 位作者 Chun-yu Yue Xue-jian Lin Fu-yu Dong Hong-jun Huang Xiao-jiao Zuo Yin-xiao Wang Xiao-guang Yuan 《China Foundry》 SCIE CAS CSCD 2023年第3期207-217,共11页
To enhance the performance of in-situ synthesized 6vol.%(Ti C+Ti B)/TC4 titanium matrix composites fabricated by casting,a variety of heat treatment processes were carried out.Upon conducting microstructure observatio... To enhance the performance of in-situ synthesized 6vol.%(Ti C+Ti B)/TC4 titanium matrix composites fabricated by casting,a variety of heat treatment processes were carried out.Upon conducting microstructure observations following various heat treatments,it was found that the composites exhibit a basketweave microstructure,consisting of an α phase and a transformed β phase.The sizes of(α+β) phases were found to be refined to varying degrees after the heat treatment processes,while the morphology of Ti B remains largely unchanged and Ti C becomes granulated.Compressive testing revealed that all composites subjected to different heat treatments demonstrate a notable increase in ultimate compressive strength as well as a slight improvement in plasticity compared to the as-cast state.The results of the tribological performance test indicated that the heat-treated composites exhibit lower average friction coefficient,specific wear rate,and worn surface roughness compared to the as-cast composite.Among the heat treatment processes studied,the composite solution heated at 1,150 °C/1 h followed by air cooling,then 950 °C/1 h followed by air cooling,and finally 500 °C/4 h followed by air cooling,demonstrates the highest levels of hardness,compressive strength,and wear resistance.These improvements are attributed to the combined effects of solid solution strengthening,grain refinement,and the pinning of dislocation slip. 展开更多
关键词 titanium matrix composites heat treatment mechanical properties tribological properties
下载PDF
Insights into the relations between cell wall integrity and in vitro digestion properties of granular starches in pulse cotyledon cells after dry heat treatment 被引量:1
5
作者 Ping Li Bin Zhang +5 位作者 Rui Liu Li Ding Xiong Fu Haiteng Li Qiang Huang Xiaowei He 《Food Science and Human Wellness》 SCIE CSCD 2023年第2期528-535,共8页
Natural foods,such as whole pulses,are recommended in the dietary guidelines of the US and China.The plant cell wall structure in whole pulses has important implications for the nutritional functionalities of starch.I... Natural foods,such as whole pulses,are recommended in the dietary guidelines of the US and China.The plant cell wall structure in whole pulses has important implications for the nutritional functionalities of starch.In this study,garbanzo bean cells with varying degrees of cell wall integrity were subjected to dry heat treatment(DHT)and used to elucidate the food structure-starch digestion properties of pulse food.The morphological features suggested that all cell samples do not exhibit remarkable changes after being subjected to DHT.Molecular rearrangement and the crystallite disruption of starch granules entrapped in cells occurred during DHT as assessed by the crystal structure and thermal properties.DHT decreased the inhibitory effects of enzymes of both the soluble and insoluble components,but the digestion rate and extent of slightly and highly damaged cell samples did not exhibit significant differences compared with their native counterparts.We concluded that the starch digestion of pulse cotyledon cells is primarily determined by the intactness of the cellular structure.This study reveals the role of food structure on the ability to retain the desirable nutritional properties of starch after subjection to physical modification. 展开更多
关键词 Cell wall integrity In vitro starch digestion PULSE Dry heat treatment
下载PDF
Improving corrosive wear resistance of Mg-Zn-Y-Zr alloys through heat treatment
6
作者 S.D.Wang M.Y.Wu +1 位作者 D.K.Xu En-hou Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期1981-1995,共15页
The wear behavior of an as-received Mg-Zn-Y-Zr alloy before and after a facile heat treatment was investigated under sliding in air and 0.5 wt.%NaCl solution.Results revealed that the wear resistance of the alloy was ... The wear behavior of an as-received Mg-Zn-Y-Zr alloy before and after a facile heat treatment was investigated under sliding in air and 0.5 wt.%NaCl solution.Results revealed that the wear resistance of the alloy was remarkably enhanced after the heat treatment,irrespective of testing condition.The wear mechanism was predominantly abrasive wear accompanied by oxidation under the dry sliding condition,while corrosive wear was dominant under sliding in the NaCl solution.The superior corrosive wear resistance was attributed to the homogenous distribution of fine I-phase precipitates in the alloy by the heat treatment,leading to a reduction in wear,corrosion as well as wear-corrosion synergy.The wear-accelerated corrosion rate was remarkably alleviated after the heat treatment. 展开更多
关键词 Magnesium alloy heat treatment CORROSION WEAR TRIBOCORROSION
下载PDF
Influence of heat treatments on incipient melting structures of DD5 nickel-based single crystal superalloy
7
作者 Zhi-hong Jia Chen-yang Li +4 位作者 Wen-xiang Jing Xiang-feng Liang Ze-kun Zhang Jia-le Xiao Yu-tao Zhao 《China Foundry》 SCIE CAS CSCD 2023年第5期395-402,共8页
The evolution of microstructure and formation mechanism of incipient melting microstructure of DD5 single crystal superalloy during solution heat treatment were studied by scanning electron microscopy(SEM),electron pr... The evolution of microstructure and formation mechanism of incipient melting microstructure of DD5 single crystal superalloy during solution heat treatment were studied by scanning electron microscopy(SEM),electron probe microanalysis(EPMA),and energy dispersive spectroscopy(EDS).The solidus and liquidus of single crystal alloy were obtained by differential scanning calorimetry(DSC).Results show that the mosaic-like eutectic and fan-like eutectic are dissolved at first,and the coarseγ'phase is dissolved later during the solution heat treatment of 1,390°C/2 h+1,310°C/4 h+1,320°C/10 h+air cooling(AC).The composition segregations of Al,Ta,W and Re are 0.99,0.96,1.04 and 1.16,respectively,which close to 1.The incipient melting is caused by the low local temperature of the alloy,and the micropore region with a lower melting point is the preferred position for incipient melting. 展开更多
关键词 SUPERALLOY solution heat treatment EUTECTIC composition segregation incipient melting
下载PDF
Hot Corrosion Resistance of TB8 Titanium Alloy after ECAP and Heat Treatment
8
作者 LI Shuaidi XU Xiaojing +1 位作者 BAI Xiang CAO Bin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1440-1448,共9页
The metastableβtitanium alloy TB8(Ti-12.76Mo-2.13Nb-2.73A1-0.16Si)was used as the original material,and the secondary processing method combining equal channel angular pressing(ECAP)and heat treatment was adopted.Wit... The metastableβtitanium alloy TB8(Ti-12.76Mo-2.13Nb-2.73A1-0.16Si)was used as the original material,and the secondary processing method combining equal channel angular pressing(ECAP)and heat treatment was adopted.With the help of optical microscope(OM),scanning electron microscope(SEM)and X-ray diffractometer(XRD),the corrosion behavior of TB8 titanium alloy after different secondary processing(800℃/850℃solid solution-520℃aging,ECAP-800℃/850℃solid solution-520℃aging,and800℃/850℃solid solution-ECAP-520℃aging)was studied.The experimental results show that the hot corrosion products of the six samples are similar,mainly Na_(2)Si_(2)O_(5),MoS_(2),TiCl_(2),Ti(SO_(4))_(2),and TiS.Due to the grains of the TB8 titanium alloy treated by 850℃solid solution-ECAP-520℃aging are obviously refined,the surface structure is the most smooth and dense,forming a continuous Al2O3protective film,and the surface defects are the least after corrosion.Its corrosion layer thickness is the lowest(102.3μm),only 36.5%-81.4%of that of other secondary processing titanium alloys.In addition,the corrosion kinetics curves of the six materials all follow parabolic laws,and the minimum corrosion weight gain of the samples after 850℃solutionECAP-520℃aging treatment is 0.7507 mg·mm^(-2),showing better hot corrosion resistance. 展开更多
关键词 TB8 ECAP heat treatment hot corrosion resistance
原文传递
Effects of Heat Treatment on Processing Characteristics of Pork
9
作者 Ting BAI Li TANG +5 位作者 Lei WANG Ying ZHANG Bowen ZAN Wei WANG Lili JI Jiamin ZHANG 《Agricultural Biotechnology》 CAS 2023年第5期67-74,共8页
[Objectives]This study was conducted to explore the effects of heat treatment on processing characteristics of pork.[Methods]The effects of low-temperature long-term cooking(LTLT),high-temperature vacuum cooking,high-... [Objectives]This study was conducted to explore the effects of heat treatment on processing characteristics of pork.[Methods]The effects of low-temperature long-term cooking(LTLT),high-temperature vacuum cooking,high-temperature cooking and high-temperature steaming on some indexes of pork products were studied,and principal component analysis was carried out.[Results]LTLT had significant effects on the total sensory score,moisture content,cooking loss rate,a value,shear force,and TBARS of pork,and the corresponding optimal product indicators were 71.40 points,72.36%,14.20%,4.79,7089.87 g,and 0.05 mg/kg,respectively.The microstructure changes in the LTLT group were relatively small,as the muscle fiber structure was relatively dense and uniform,and the gaps between muscle fibers were small.A total of 30 volatile flavor compounds were detected in the four groups,mainly alcohols,alkenes,alkanes,lipids,ketones,and aldehydes,and the LTLT group had more types and high contents.PCA analysis showed that the sensory evaluation,moisture content,elasticity,a value and LTLT were positively correlated with principal component 1.[Conclusions]Various indexes comprehensively showed that the LTLT group had better meat color,flavor,texture characteristics and lower oxidation degree than traditional cooking and steaming methods,which provides a theoretical reference for its large-scale application in the processing of prepared meat products. 展开更多
关键词 heat treatment PORK Processing characteristics Principal component analysis
下载PDF
Impact of Heat Treatments and Hole Density (p) on the Structural, Electrical, and Superconducting Properties of LnSrBaCu3O6+z (Ln = Eu, Sm, Nd) Compounds
10
作者 Mohammed Bellioua Mohamed Id El Amel +8 位作者 Fatima Bouzit Mohamed Errai Driss Soubane Aderrahim Ait Khlifa Mohammed Khenfouch Issam Mouhti Ahmed Tirbiyine Essediq Youssef El Yakoubi Abdelhakim Nafidi 《Communications and Network》 2023年第4期83-97,共15页
In this study, we thoroughly examined the impact of heat treatments and hole count (p) on the properties of LnSrBaCu<sub>3</sub>O<sub>6+z</sub> (Ln = Eu, Sm, Nd) compounds. We focused on prepar... In this study, we thoroughly examined the impact of heat treatments and hole count (p) on the properties of LnSrBaCu<sub>3</sub>O<sub>6+z</sub> (Ln = Eu, Sm, Nd) compounds. We focused on preparation, X-ray diffraction with Rietveld refinement, AC susceptibility, DC resistivity measurements, and heat treatment effects. Two heat treatment types were applied: oxygen annealing [O] and argon annealing followed by oxygen annealing [AO]. As the rare earth Ln’s ionic radius increased, certain parameters notably changed. Specifically, c parameter, surface area S, and volume V increased, while critical temperature Tc and holes (p) in the CuO<sub>2</sub> plane decreased. The evolution of these parameters with rare earth Ln’s ionic radius in [AO] heat treatment is linear. Regardless of the treatment, the structure is orthorhombic for Ln = Eu, tetragonal for Ln = Nd, orthorhombic for Ln = Sm [AO], and pseudo-tetragonal for Sm [O]. The highest critical temperature is reached with Ln = Eu (Tc [AO] = 87.1 K). Notably, for each sample, Tc [AO] surpasses Tc [O]. Observed data stems from factors including rare earth ionic size, improved cationic and oxygen chain order, holes count p in Cu(2)O<sub>2</sub> planes, and in-phase purity of [AO] samples. Our research strives to clearly demonstrate that the density of holes (p) within the copper plane stands as a determinant impacting the structural, electrical, and superconducting properties of these samples. Meanwhile, the other aforementioned parameters contribute to shaping this density (p). 展开更多
关键词 High-Tc Superconductors heat treatments Hole Density (p) Tc Parameter c Surface ab Electrical Resistance X-Ray Diffraction
下载PDF
Effects of Electron Beam Local Postweld Heat Treatment on Microstructure and Properties of 30CrMnSiNi2A Steel Welded Joints 被引量:12
11
作者 CHEN Fu-rong 1, HUO Li-xing 1, ZHANG Yu-feng 1, ZHANG Li 1, LIU Fang-jun 2, CHEN Gang 2 (1. College of Materials Science and Engineering, Tianjin University, Tianjin 300072, China 2. Aviation Techniques Institute of Beijing, Beijing 100024, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期47-48,共2页
To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treat... To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treatment (EBLPWHT) is a rather new heat treatment procedure that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. In this paper, the microstructure, mechanical properties, fracture toughness and fatigue properties of electron beam welded joints of 30CrMnSiNi2A steel in as-welded (AW) and EBLPWHT conditions have been investigated respectively. The results show that the microstructures of different zones of joints in as-welded condition are changed by EBLPWHT procedure, in which the welds from coarse needle martensite into lath-shaped martensite; the main structures of heat affected zones (HAZ) from lath-shaped martensite into lower bainite. The properties of welded joints can be improved by the EBLPWHT in some extent, especially the fracture toughness of the welds and the fatigue crack resistance of welded joints can be sufficiently improved. However, more appropriate heat treatment parameters of the EBLPWHT have to be studied in order to increase the mechanical properties of base metal near by the HAZ. 展开更多
关键词 electron beam welding electron beam local heat treatment MICROSTRUCTURE fracture toughness fatigue properties
下载PDF
Effect of heat treatment on LPSO morphology and mechanical properties of Mg-Zn-Y-Gd alloys 被引量:15
12
作者 Hongxin Liao Jonghyun Kim +4 位作者 Taekyung Lee Jiangfeng Song Jian Peng Bin Jiang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期1120-1127,共8页
The mechanical properties and microstructure were investigated under different Zn content and heat treatment conditions in a Mg-Zn-YGd cast alloy.A part of the long period stacking order(LPSO)phases transformed to W-M... The mechanical properties and microstructure were investigated under different Zn content and heat treatment conditions in a Mg-Zn-YGd cast alloy.A part of the long period stacking order(LPSO)phases transformed to W-M^ZnaRE?phases with an increase in Zn content from 0.9 at.%to 1.8 at.%,and the ultimate tensile strength(UTS)increased from 229 MPa to 248 MPa.With solution treatment at 480°C,the content of the LPSO phase and strength sharply decreased in the Mg-1.8Zn-0.8Y-0.8Gd alloy,whereas this change was not significantly observed in the Mg-0.9Zn-O.8Y-O.8Gd alloy.After solution treatment,the elongation significantly improved and the UTS sharply decreased in both alloys.The lamellar and filminess LPSO phases were observed with aging treatment at 200℃.Moreover,the strengthening efficiency of lamellar and filminess LPSO phases was lower than that of the block LPSO phases.Therefore,the UTS of the T6 state was lower than that of the as-cast alloy. 展开更多
关键词 Mg alloy LPSO Age behavior Mechanical properties heat treatment Strengthening efficiency
下载PDF
Effect of isothermal heat treatment on semi-solid microstructure of AZ91D magnesium alloy containing rare earth Gd 被引量:9
13
作者 Yong Hu Li Rao Xu-wu Ni 《China Foundry》 SCIE CAS 2015年第1期20-25,共6页
The AZ91 D magnesium alloy containing rare earth Gd was prepared in this study, and the effect of semi-solid isothermal heat treatment on the microstructure of the alloy was investigated to obtain an optimum semi-soli... The AZ91 D magnesium alloy containing rare earth Gd was prepared in this study, and the effect of semi-solid isothermal heat treatment on the microstructure of the alloy was investigated to obtain an optimum semi-solid structure. Results show that Gd can refine the microstructure of AZ91 D magnesium alloy, and the optimum semi-solid AZ91 D microstructure can be achieved by adding 1.5wt.% Gd. After treated at 585 °C for 30 min, the well distributed rose-shaped and near-spherical semi-solid microstructures of AZ91D+1.5wt.%Gd alloy can be obtained. The liquid phase of the semi-solid alloy consists of three components, namely, the molten pool, the "entrapped liquid" pool and the liner liquid film which separates two neighbor particles. The solid phase is composed of two phases, the primary α-Mg particles and the α-Mg phase formed in the second stage of solidification. With the increase of holding time, melting which causes the decrease of the primary α-Mg particle size is the dominant mechanism in the initial stage while coalescence and Ostwald ripening tend to be the principles later. 展开更多
关键词 isothermal heat treatment semi-solid processing AZ91D GADOLINIUM
下载PDF
Microstructural evolution of a PM TiAl alloy during heat treatment in α+γ phase field 被引量:5
14
作者 SU Meike ZHENG Lijing +2 位作者 LANG Zebao YAN Jie ZHANG Hu 《Rare Metals》 SCIE EI CAS CSCD 2012年第5期424-429,共6页
In this study, the effect of temperatures and cooling rates of heat treatment on the microstructure of a powder metallurgy (PM) Ti-46Al-2Cr-2Nb-(B,W) (at.%) alloy was studied. Depending on the cooling rate and tempera... In this study, the effect of temperatures and cooling rates of heat treatment on the microstructure of a powder metallurgy (PM) Ti-46Al-2Cr-2Nb-(B,W) (at.%) alloy was studied. Depending on the cooling rate and temperature, the different structures were obtained from the initial near-γ (NG) microstructures by heat treatment in the α+γ field. The results show that the microstructures of samples after furnace cooling (FC) consist primarily of equiaxed γ and α 2 grains, with a few grains containing lamellae. Duplex microstructures consist mainly of γ grains and lamellar colonies were obtained in the quenching into another furnace at 900°C (QFC) samples. However, further in- creasing of the cooling rate to air cooling (AC) induces the transformation of α→α_2 and results in a microstructure with equiaxed γ and α_2 grains, and no lamellar colonies are found. 展开更多
关键词 γ-TiAl-based alloys powder metallurgy heat treatment duplex structure phase volume fractions
下载PDF
Effects of ytterbium addition and heat treatment on the mechanical properties and biocorrosion behaviors of Mg-Zn-Zr alloy 被引量:8
15
作者 Lu Li Tao Wang +5 位作者 Yu Wang Cun-cai Zhang Hao Lv Hua Lin Wen-bin Yu Chu-jie Huang 《Journal of Magnesium and Alloys》 SCIE 2020年第2期499-509,共11页
Mechanical properties and biocorrosion behaviors in simulated body fluid(SBF)of newly developed Mg-5.8 Zn-0.5 Zr-x Yb(ZK60-X Yb,x=0,1.0,2.0wt%)magnesium alloys in the solution-treated(T4)and artificially-aged(T6)condi... Mechanical properties and biocorrosion behaviors in simulated body fluid(SBF)of newly developed Mg-5.8 Zn-0.5 Zr-x Yb(ZK60-X Yb,x=0,1.0,2.0wt%)magnesium alloys in the solution-treated(T4)and artificially-aged(T6)conditions were investigated.The results of mechanical properties show that with Yb addition,the microhardness and the ultimate tensile strength(UTS)of the tested alloys are significantly increased despite a slight decrease in tensile elongation in both T4 and T6 conditions.Especially,after the T6 treatment,the microhardness and the UTS of the samples were further improved,which was mainly attributed to the precipitation strengthening.The biocorrosion behaviors of the tested alloys were studied using electrochemical examinations and immersion tests.The results indicate that the biocorrosion resistance of the tested alloys is significantly improved by Yb addition in both T4 and T6 conditions.Although the corrosion resistance was slightly deteriorated after T6 treatment,the aged ZK60-2.0 Yb alloy still exhibited a favorable corrosion behavior,which was mainly ascribed to the corrosion barrier effect of a more compact and uniform protective film induced by the dispersed nano-scale precipitates.Electrochemical measurements also confirmed these observations.Given the favorable comprehensive performance in mechanical and biocorrosion behaviors,the T6 treated ZK60-2.0 Yb alloy may be considered as a promising candidate for biomedical applications. 展开更多
关键词 Mg-Yb-Zn-Zr alloy Mechanical properties Biocorrosion behaviors heat treatment Biomedical applications
下载PDF
A new fast heat treatment process for cast A356 alloy motorcycle wheel hubs 被引量:5
16
作者 Shi-ping Lu Rui Du +2 位作者 Jian-ping Liu Lin-can Chen Shu-sen Wu 《China Foundry》 SCIE 2018年第1期11-16,共6页
The normal T6 heat treatment process for cast A356 alloy generally requires about 15 h. This longperiod procedure increases greatly the manufacturing cost and decreases the productivity in practical production. In thi... The normal T6 heat treatment process for cast A356 alloy generally requires about 15 h. This longperiod procedure increases greatly the manufacturing cost and decreases the productivity in practical production. In this study, a new short-time heat treatment process with only 30 min solution time at 540℃ was developed for the production of motorcycle wheel hubs in order to reduce heat treatment time. Comparisons on microstructure evaluation and mechanical properties, such as tensile strength and ductility, were made between this new fast process and the conventional T6 heat treatment. The results revealed that this new heat treatment process enabled the spheroidization of the eutectic silicon thoroughly, while minimizing the growth of eutectic silicon. The A356 alloy after this new short-time heat treatment shows nearly equal mechanical properties compared with the same alloy heat treated in a normal T6 heat treatment. This investigation makes it possible to significantly improve the efficiency of heat treatment on A356 alloy and, at the same time, improve the mechanical properties of the alloy. 展开更多
关键词 A356 alloy short-time heat treatment microstructure evaluation mechanical properties
下载PDF
Microstructure evolution of semi-solid Mg-10Gd-3Y-0.5Zr alloy during isothermal heat treatment 被引量:8
17
作者 Guohua Wu Yang Zhang +1 位作者 Wencai Liu Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第1期39-46,共8页
In this study,the microstructure evolution of semi-solid Mg-10Gd-3Y-0.5Zr alloy during isothermal heat treatment has been investigated.The results show that primary particles coarsen continuously during the holding.Co... In this study,the microstructure evolution of semi-solid Mg-10Gd-3Y-0.5Zr alloy during isothermal heat treatment has been investigated.The results show that primary particles coarsen continuously during the holding.Coarsening rate decreases with the increase of isothermal temperature.When isothermal temperature increases from 600℃ to 620℃,the dominant mechanism for coarsening changes from particle coalescence to Ostwald ripening.Equiaxed as-cast microstructure is beneficial to the semi-solid microstructure after isothermal heat treatment,which brings about the refinement and spheroidization of primary particles,and shortening of holding time.Significant modification of second phases can also be achieved after isothermal heat treatment,due to its unique solidification process.The optimum processing parameters for Mg-10Gd-3Y-0.5Zr alloy in isothermal heat treatment are isothermal temperature of 610℃-620℃ and holding time of 20-40 min. 展开更多
关键词 Mg-10Gd-3Y-0.5Zr Semi-solid forming Isothermal heat treatment MICROSTRUCTURE
下载PDF
Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing 被引量:6
18
作者 Yangyang Guo Gaofeng Quan +4 位作者 Mert Celikin Lingbao Ren Yuhang Zhan Lingling Fan Houhong Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1930-1940,共11页
To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated... To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated.Three different heat treatment procedures(T4,T5 and T6)were performed.According to the results,after T4 heat treatment,the microsegregation of alloying elements was improved with the eutectic structure dissolved.Samples after T5 heat treatment inherited the net-like distribution of secondary phases similar to the as-deposited sample,where the eutectic structure covering the interdendritic regions and theβ-phase precipitated around the eutectic structure.After T6 heat treatment,the tinyβ-phases re-precipitated from the matrix and distributed in inner and outer of the grains.The hardness distribution of the samples went through T4 and T6 heat treatment was more uniform in comparison to that of T5 heat treated samples.The tensile test showed that the T6 heat treatment improved the strength and ductility,and the anisotropy between horizontal and vertical can be eliminated.Moreover,T4 treated samples exhibited highest ductility. 展开更多
关键词 Wire arc additive manufacturing AZ80M magnesium alloy heat treatment MICROSTRUCTURE Mechanical properties
下载PDF
Heat treatment bimetallic PdAu nanocatalyst for oxygen reduction reaction 被引量:3
19
作者 Qingyun Hu Wei Zhan +4 位作者 Yifei Guo Laiming Luo Ronghua Zhang Di Chen Xinwen Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期217-223,I0008,共8页
Pd-based nanocatalyst is a potential oxygen reduction oxidation(ORR)catalyst because of its high activity in alkaline medium and low cost.In this work,bimetallic Pd Au nanocatalysts are prepared by one-pot hydrotherma... Pd-based nanocatalyst is a potential oxygen reduction oxidation(ORR)catalyst because of its high activity in alkaline medium and low cost.In this work,bimetallic Pd Au nanocatalysts are prepared by one-pot hydrothermal method using triblock pluronic copolymers,poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)(PEO19-PPO69-PEO19)(P123)as reducer and stabilizer,and heat-treatment method is applied to regulate catalyst structure and improve catalyst activity.The results show that the heat treatment can agglomerate the catalyst to a certain extent,but effectively improve the crystallinity and alloying degree of the catalyst.The ORR performance of the Pd Au nanocatalysts obtained under different heat treatment conditions is systematically investigated.Compared with commercial Pd black and Pd Au catalyst before heat treatment,the ORR performance of Au Pd nanocatalyst obtained after heat treatment for one hour at 500℃ has been enhanced.The Pd Au nanocatalysts after heat treatment also display enhanced anti-methanol toxicity ability in acidic medium. 展开更多
关键词 PdAu catalysts Nanochain heat treatment Oxygen reduction reaction Anti-methanol oxidation
下载PDF
Effect of heat treatment on the microstructures and mechanical properties of the sand-cast Mg-2.7Nd-0.6Zn-0.5Zr alloy 被引量:4
20
作者 D.Wu Y.Q.Ma +1 位作者 R.S.Chen W.Ke 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第1期20-26,共7页
The tensile testing bars of the Mg-2.7Nd-0.6Zn-0.5Zr(wt.%)alloy were prepared by sand casting.The effect of solution temperature and aging time on the microstructures and mechanical properties were investigated.The as... The tensile testing bars of the Mg-2.7Nd-0.6Zn-0.5Zr(wt.%)alloy were prepared by sand casting.The effect of solution temperature and aging time on the microstructures and mechanical properties were investigated.The as-cast alloy was composed ofαmagnesium matrix and Mg12Nd eutectic compounds.After solution treatment at 500℃ for 18 h,the volume fraction of eutectic compounds decreased from∼7.8%to∼2.3%,and some small Zr-containing particles were observed to precipitate at grain interiors.As the solution temperature increased to 525℃ for 14 h,most of the eutectic compounds dissolved into the matrix.Peak-aged at 200℃ for 12 h,fineβ″particles was the dominant strengthening phase.The yield strength,ultimate tensile strength and elongation in the peak-aged condition were 191 MPa,258 MPa and 4.2%,respectively.Moreover,the Mg-2.7Nd-0.6Zn-0.5Zr alloys under different heat treatment conditions exhibited different tensile fracture modes. 展开更多
关键词 Magnesium alloy Sand-cast heat treatment MICROSTRUCTURE Mechanical properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部