To improve the separation performance of a supersonic gas separation device for the treatment of gas mixture with a single heavy component, a novel structure with shorter settlement distance was constructed and a meth...To improve the separation performance of a supersonic gas separation device for the treatment of gas mixture with a single heavy component, a novel structure with shorter settlement distance was constructed and a method of droplet enlargement was applied. A series of experiments were carried out in the improved separation device under various conditions, using air-ethanol vapor as the medium and micro water droplets as nucleation cen- ters. The effects of the inlet pressure, temperature and relative humidity, the swirling intensity, and mass flow rate of water on the separation performance were investigated. The separation was improved by increasing the inlet pressure and relative humidity. With the decrease of swirling intensity and mass flow rate of water, the separation efficiency increased first and then decreased. The inlet temperature had a slight effect on the separation. The results showed that the separation performance was effectively improved using the proposed structure and method, and the best separation in this study was obtained with the ethanol removal rate about 55% and dew point depression 27 K. The addition of water had little pollution to the air-ethanol vapor system since the water carry-over rate was within the range of -2 %-0 in most cases.展开更多
To examine the features of heavy metal pollution of PM2.5 (particulate matter less than 2.5 μm) in Tianjin, China, as well as the exposure risk of PM2.5 to human health, we analyzed ambient PM2.5samples collected f...To examine the features of heavy metal pollution of PM2.5 (particulate matter less than 2.5 μm) in Tianjin, China, as well as the exposure risk of PM2.5 to human health, we analyzed ambient PM2.5samples collected from a campus of Nankai University in June, August, and October 2012. The concentrations of PM2.5 and heavy metals (Ni, Cu, Pb, Zn, Cr, Cd, Hg, As and Mn) in PM2.5 were analyzed by gravimetric analysis and inductively coupled plasma-mass spectrometry, respectively. The results show that the heavy metals contained in PM2.5 were, in descending order, Cu, Zn, Pb, Mn, Cr, Ni, Cd, As, and Hg. The proportion of Cd exceeded the secondary level of National Ambient Air Quality Standard of China (GB 3095-2012) by 1.3 times, while others were within the limit. Enrichment factor analysis indicated that Cu, Zn, Cd, Pb, and Hg are mainly from anthropogenic sources. Principal component analysis indicated that the main sources of the heavy metals are vehicle exhaust, chemical waste, and coal-burning activities. The nine heavy metals which may cause health issues by exposure through the human respiratory system and should be further examined are Cr, Cd, As, Ni, Cu, Pb, Mn, Zn, and Hg, in the order of decreasing risk levels. With reference to the U.S. EPA standard the risk levels of all nine metals were below the acceptable level (10 6/year).展开更多
基金Supported by the Natural Science Foundation of Liaoning Province, China (20052193) and Ph.D. Programs Foundation of Ministry of Education o f China (20070141045).
文摘To improve the separation performance of a supersonic gas separation device for the treatment of gas mixture with a single heavy component, a novel structure with shorter settlement distance was constructed and a method of droplet enlargement was applied. A series of experiments were carried out in the improved separation device under various conditions, using air-ethanol vapor as the medium and micro water droplets as nucleation cen- ters. The effects of the inlet pressure, temperature and relative humidity, the swirling intensity, and mass flow rate of water on the separation performance were investigated. The separation was improved by increasing the inlet pressure and relative humidity. With the decrease of swirling intensity and mass flow rate of water, the separation efficiency increased first and then decreased. The inlet temperature had a slight effect on the separation. The results showed that the separation performance was effectively improved using the proposed structure and method, and the best separation in this study was obtained with the ethanol removal rate about 55% and dew point depression 27 K. The addition of water had little pollution to the air-ethanol vapor system since the water carry-over rate was within the range of -2 %-0 in most cases.
文摘To examine the features of heavy metal pollution of PM2.5 (particulate matter less than 2.5 μm) in Tianjin, China, as well as the exposure risk of PM2.5 to human health, we analyzed ambient PM2.5samples collected from a campus of Nankai University in June, August, and October 2012. The concentrations of PM2.5 and heavy metals (Ni, Cu, Pb, Zn, Cr, Cd, Hg, As and Mn) in PM2.5 were analyzed by gravimetric analysis and inductively coupled plasma-mass spectrometry, respectively. The results show that the heavy metals contained in PM2.5 were, in descending order, Cu, Zn, Pb, Mn, Cr, Ni, Cd, As, and Hg. The proportion of Cd exceeded the secondary level of National Ambient Air Quality Standard of China (GB 3095-2012) by 1.3 times, while others were within the limit. Enrichment factor analysis indicated that Cu, Zn, Cd, Pb, and Hg are mainly from anthropogenic sources. Principal component analysis indicated that the main sources of the heavy metals are vehicle exhaust, chemical waste, and coal-burning activities. The nine heavy metals which may cause health issues by exposure through the human respiratory system and should be further examined are Cr, Cd, As, Ni, Cu, Pb, Mn, Zn, and Hg, in the order of decreasing risk levels. With reference to the U.S. EPA standard the risk levels of all nine metals were below the acceptable level (10 6/year).