This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula...This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.展开更多
Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the mos...Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.展开更多
On August 7,2023,Mangshi City,Dehong Prefecture experienced a local heavy rainstorm,and the geological disaster caused by the heavy rainfall caused casualties and property losses.Based on the real-time observation dat...On August 7,2023,Mangshi City,Dehong Prefecture experienced a local heavy rainstorm,and the geological disaster caused by the heavy rainfall caused casualties and property losses.Based on the real-time observation data of automatic stations,Doppler weather radar detection and meteorological risk warning products,the disaster situation,social impact,forecast and early warning service,causes of heavy precipitation and forecast and early warning inspection were summarized and analyzed.The results show that the heavy rainfall was prominent locally,lasted for a long time and accumulated a large amount of rainfall.There were biases in model products,and it was difficult for forecasters to make subjective corrections in complex terrain.The analysis ideas and focus points of heavy rainfall forecast,the improvement ideas and technical schemes of forecast deviation,and the improvement ideas and suggestions of services were summarized.It provides a reference for the forecast and early warning of severe weather in the future.展开更多
Warm-sector heavy rainfall(WR),shear-line heavy rainfall(SR),and frontal heavy rainfall(FR)are three types of rainfall that frequently occur during the pre-summer rainy season in south China.In this research,we invest...Warm-sector heavy rainfall(WR),shear-line heavy rainfall(SR),and frontal heavy rainfall(FR)are three types of rainfall that frequently occur during the pre-summer rainy season in south China.In this research,we investigated the differences in microphysical characteristics of heavy rainfall events during the period of 10-15 May 2022 based on the combined observations from 11 S-band polarimetric radars in south China.The conclusions are as follows:(1)WR has the highest radar echo top height,the strongest radar echo at all altitudes,the highest lightning density,and the most active ice-phase process,which suggests that the convection is the most vigorous in the WR,moderate in the FR,and the weakest in the SR.(2)Three types of rainfall are all marine-type precipitation,the massweighted mean diameter(Dm,mm)and the intercept parameter(Nw,mm^(-1) m^(-3))of the raindrops in the WR are the largest.(3)The WR possesses the highest proportion of graupel compared with the FR and SR,and stronger updrafts and more abundant water vapor supply may lead to larger raindrops during the melting and collision-coalescence processes.(4)Over all the heights,liquid and ice water content in the WR are higher than those in the SR and FR,the ratio of ice to liquid water content in the WR is as high as 27%when ZH exceeds 50 dBZ,definitely higher than that in the SR and FR,indicating that the active ice-phase process existing in the WR is conducive to the formation of heavy rainfall.展开更多
During the April-June raining season,warm-sector heavy rainfall(WR) and frontal heavy rainfall(FR) often occur in the south of China,causing natural disasters.In this study,the microphysical characteristics of WR and ...During the April-June raining season,warm-sector heavy rainfall(WR) and frontal heavy rainfall(FR) often occur in the south of China,causing natural disasters.In this study,the microphysical characteristics of WR and FR events from 2016 to 2022 are analyzed by using 2-dimensional video disdrometer(2DVD) data in the south of China.The microphysical characteristics of WR and FR events are quite different.Compared with FR events,WR events have higher concentration of D<5.3 mm(especially D <1 mm),leading to higher rain rates.The mean values of Dmand lgNwof WR events are higher than that of FR events.The microphysical characteristics in different rain rate classes(C1:R~5-20 mm h-1,C2:R~20-50 mm h-1,C3:R~50-100 mm h^(-1),and C4:R> 100 mm h^(-1)) for WR and FR events are also different.Raindrops from C3 contribute the most to the precipitation of WR events,and raindrops from C2 contribute the most to the precipitation of FR events.For C2 and C3,compared with FR events,WR events have higher concentration of D <1 mm and D~3-4.5 mm.Moreover,the shape and slope(μ-A) relationships and the radar reflectivity and rain rate(Z-R) relationships of WR and FR events are quite different in each rain rate class.The investigation of the difference in microphysical characteristics between WR and FR events provide useful information for radar-based quantitative precipitation estimation and numerical prediction.展开更多
An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitatio...An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitation. The present study examines the roles of persistent low-level jets(LLJs) in maintaining the precipitation using surface station observations and reanalysis datasets. The LLJs triggered strong ascending motions and carried moisture mainly from the outflow of Typhoon In-fa(2021). The varying directions of the LLJs well corresponded to the meridional shifts of the rainfall. The precipitation rate reached a maximum during 20-21 July as the LLJs strengthened and expanded vertically into double LLJs, including synoptic-weather-system-related LLJs(SLLJs) at 850–700 hPa and boundary-layer jets(BLJs)at ~950 hPa. The coupling of the SLLJ and BLJ provided strong mid-and low-level convergence on 20 July, whereas the SLLJ produced mid-level divergence at its entrance that coupled with low-level convergence at the terminus of the BLJ on21 July. The formation mechanisms of the two types of LLJs are further examined. The SLLJs and the low-pressure vortex(or inverted trough) varied synchronously as a whole and were affected by the southwestward movement of the WPSH in the rainiest period. The persistent large total pressure gradient force at low levels also maintained the strength of low-level geostrophic winds, thus sustaining the BLJs on the synoptic scale. The results based on a Du-Rotunno 1D model show that the Blackadar and Holton mechanisms jointly governed the BLJ dynamics on the diurnal scale.展开更多
A record-breaking heavy rainfall event that occurred in Zhengzhou,Henan province during 19–21 July 2021 is simulated using the Weather Research and Forecasting Model,and the large-scale precipitation efficiency(LSPE)...A record-breaking heavy rainfall event that occurred in Zhengzhou,Henan province during 19–21 July 2021 is simulated using the Weather Research and Forecasting Model,and the large-scale precipitation efficiency(LSPE)and cloud-microphysical precipitation efficiency(CMPE)of the rainfall are analyzed based on the model results.Then,the key physical factors that influenced LSPE and CMPE,and the possible mechanisms for the extreme rainfall over Zhengzhou are explored.Results show that water vapor flux convergence was the key factor that influenced LSPE.Water vapor was transported by the southeasterly winds between Typhoon In-Fa(2021)and the subtropical high,and the southerly flow of Typhoon Cempaka(2021),and converged in Zhengzhou due to the blocking by the Taihang and Funiu Mountains in western Henan province.Strong moisture convergence centers were formed on the windward slope of the mountains,which led to high LSPE in Zhengzhou.From the perspective of CMPE,the net consumption of water vapor by microphysical processes was the key factor that influenced CMPE.Quantitative budget analysis suggests that water vapor was mainly converted to cloud water and ice-phase particles and then transformed to raindrops through melting of graupel and accretion of cloud water by rainwater during the heavy precipitation stage.The dry intrusion in the middle and upper levels over Zhengzhou made the high potential vorticity descend from the upper troposphere and enhanced the convective instability.Moreover,the intrusion of cold and dry air resulted in the supersaturation and condensation of water vapor,which contributed to the heavy rainfall in Zhengzhou.展开更多
Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional ob...Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional observations for the“21·7”Henan extremely heavy rainfall is analyzed and compared with a baseline test that assimilates only conventional observations in this study.The results show that the 24-h cumulative precipitation forecast by the assimilation experiment with the addition of the AGRI exceeds 500 mm,compared to a maximum value of 532.6 mm measured by the national meteorological stations,and that the location of the maximum precipitation is consistent with the observations.The results for the short periods of intense precipitation processes are that the simulation of the location and intensity of the 3-h cumulative precipitation is also relatively accurate.The analysis increment shows that the main difference between the two sets of assimilation experiments is over the ocean due to the additional ocean observations provided by FY-4A,which compensates for the lack of ocean observations.The assimilation of satellite data adjusts the vertical and horizontal wind fields over the ocean by adjusting the atmospheric temperature and humidity,which ultimately results in a narrower and stronger WV transport path to the center of heavy precipitation in Zhengzhou in the lower troposphere.Conversely,the WV convergence and upward motion in the control experiment are more dispersed;therefore,the precipitation centers are also correspondingly more dispersed.展开更多
An extreme monsoonal heavy rainfall event lasted for nine days and recurred in the interior of northern south China from June 13 to 21, 2022. Using regional meteorological stations and ERA5 reanalysis data, the causes...An extreme monsoonal heavy rainfall event lasted for nine days and recurred in the interior of northern south China from June 13 to 21, 2022. Using regional meteorological stations and ERA5 reanalysis data, the causes of this extreme monsoonal rainfall event in south China were analyzed and diagnosed. The results are shown as follows. A dominant South Asian high tended to be stable near the Qinghai-Tibet Plateau, providing favorable upper-level dispersion conditions for the occurrence of heavy rainfall in south China. A western Pacific subtropical high dominated the eastern part of the South China Sea, favoring stronger and more northward transport of water vapor to the northern part of south China at lower latitudes than normal. The continuous heavy precipitation event can be divided into two stages. The first stage(June 13-15) was the frontal heavy rainfall caused by cold air(brought by an East Asian trough)from the mid-latitudes that converged with a monsoonal airflow. The heavy rains occurred mostly in the area near a shear in front of the center of a synoptic-system-related low-level jet(SLLJ), and the jet stream and precipitation were strongest in the daytime. The second stage(June 16-21) was the warm-sector heavy rainfall caused by a South China Sea monsoonal low-level jet penetrating inland. The heavy rainfall occurred on the windward slope of the Nanling Mountains and in the northern part of a boundary layer jet(BLJ). The BLJ experienced five nighttime enhancements, corresponding well with the enhancement of the rainfall center, showing significant nighttime heavy rainfall characteristics. Finally, a conceptual diagram of inland-type warm-sector heavy rainfall in south China is summarized.展开更多
A heavy rainfall event in south China was simulated by the Weather Research and Forecasting(WRF) model with three microphysics schemes, including the Morrison scheme, Thompson scheme, and Milbrandt and Yau scheme(MY),...A heavy rainfall event in south China was simulated by the Weather Research and Forecasting(WRF) model with three microphysics schemes, including the Morrison scheme, Thompson scheme, and Milbrandt and Yau scheme(MY), which aim to evaluate the capability to reproduce the precipitation and radar echo reflectivity features, and to evaluate evaluate their differences in microphysics and the associated thermodynamical and dynamical feedback. Results show that all simulations reproduce the main features crucial for rainfall formation. Compared with the observation, the MY scheme performed better than the other two schemes in terms of intensity and spatial distribution of rainfall. Due to abundant water vapor, the accretion of cloud droplets by raindrops was the dominant process in the growth of raindrops while the contribution of melting was a secondary effect. Riming processes, in which frozen hydrometeors collect cloud droplets mainly, contributed more to the growth of frozen hydrometeors than the Bergeron process. Extremely abundant snow and ice were produced in the Thompson and MY schemes respectively by a deposition process. The MY scheme has the highest condensation and evaporation, but the lowest deposition. As a result, in the MY scheme, the enhanced vertical gradient of condensation heating and evaporation cooling at low levels produces strong positive and weak negative potential vorticity in Guangdong, and may favor the formation of the enhanced rainfall center over there.展开更多
In August 2021,a warm-sector heavy rainfall event under the control of the western Pacific subtropical high occurred over the southeastern coast of China.Induced by a linearly shaped mesoscale convective system(MCS),t...In August 2021,a warm-sector heavy rainfall event under the control of the western Pacific subtropical high occurred over the southeastern coast of China.Induced by a linearly shaped mesoscale convective system(MCS),this heavy rainfall event was characterized by localized heavy rainfall,high cumulative rainfall,and extreme rainfall intensity.Using various observational data,this study first analyzed the precipitation features and radar reflectivity evolution.It then examined the role of environmental conditions and the relationship between the ambient wind field and convective initiation(CI).Furthermore,the dynamic lifting mechanism within the organization of the MCS was revealed by em-ploying multi-Doppler radar retrieval methods.Results demonstrated that the linearly shaped MCS,developed under the influence of the subtropical high,was the primary cause of the extreme rainfall event.High temperatures and humidity,coupled with the convergence of low-level southerly winds,established the environmental conditions for MCS develop-ment.The superposition of the convergence zone generated by the southerly winds in the boundary layer(925-1000 hPa)and the divergence zone in the lower layer(700-925 hPa)supplied dynamic lifting conditions for CI.Additionally,a long-term shear line(southerly southwesterly)offered favorable conditions for the organization of the linearly shaped MCS.The combined effects of strengthening low-level southerly winds and secondary circulation in mid-upper levels were influential factors in the development and maintenance of the linearly shaped MCS.展开更多
An extensive rainfall occurred in central and eastern China during 23-24 April, 2021. This research mainly uses the reanalysis data of NCEP/NCAR every 6 hours to analyze this heavy rainfall weather process. The result...An extensive rainfall occurred in central and eastern China during 23-24 April, 2021. This research mainly uses the reanalysis data of NCEP/NCAR every 6 hours to analyze this heavy rainfall weather process. The results show that the main reason for this precipitation process is the shear formed between the cold air and the warm and humid air flow in the southwest. The low temperature on the ground allows the warm and humid air flow to lift up to form precipitation. The shear system is strengthened to a low vortex, which greatly strengthens the vertical ascent movement. Good water vapor and dynamic conditions form a large range of heavy rainfall.展开更多
Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation ...Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord Gi statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.展开更多
The initiation mechanism of debris flow is regarded as the key step in understanding the debrisflow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine parti...The initiation mechanism of debris flow is regarded as the key step in understanding the debrisflow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine particles in soil will lead to soil failure and then develop into debris flow. Based on this hypothesis and considering the three factors of slope gradient, rainfall duration and rainfall intensity, 16 flume experiments were designed using the method of orthogonal design and completed in a laboratory. Particle composition changes in slope toe, volumetric water content, fine particle movement characteristics and soil failure mechanism were analyzed and understood as follows: the soil has complex, random and unstable structures, which causes remarkable pore characteristics of poor connectivity, non-uniformity and easy variation. The major factors that influence fine particle migration are rainfall intensity and slope. Rainfall intensity dominates particle movement, whereby high intensity rainfall induces a large number of mass movement and sharp fluctuation, causing more fine particles to accumulate at the steep slope toe. The slope toe plays an important role in water collection and fine particleaccumulation. Both fine particle migration and coarse particle movement appears similar fluctuation. Fine particle migration is interrupted in unconnected pores, causing pore blockage and fine particle accumulation, which then leads to the formation of a weak layer and further soil failure or collapses. Fine particle movement also causes debris flow formation in two ways: movement on the soil surface and migration inside the soil. The results verify the hypothesis that the function of fine particle migration in soil failure process is conducive for further understanding the formation mechanism of soil failure and debris flow initiation.展开更多
Persistent heavy rainfall events (PHR events) comprise one category of weather- and climate- related extreme events. Based on daily rainfall data measured in China during the period of 1951-2004, several quantitativ...Persistent heavy rainfall events (PHR events) comprise one category of weather- and climate- related extreme events. Based on daily rainfall data measured in China during the period of 1951-2004, several quantitative criteria were developed to define PHR events by means of their precipitation intensity, temporal duration, spatial extent and persistence. Then a semi-objective classification based on these criteria was applied to summer daily rainfall data to identify all PHR events. A total of 197 events were observed during the study period. All events were further classified into 5 categories according to their comprehensive intensity; into 3 types according to their circulation regime; and into 8 groups according to the geographic locations of their rainbands. Based on these different classifications, finally, the behaviors of 130 PHR events identified as the most severe, severe and moderate categories since the year of 1951, including characteristics of the spatial and temporal distributions of their frequencies, intensities, and rainbands, were investigated in order to present a comprehensive description of the PHR events. The results will be helpful to the future study of revealing and understanding the processes that govern the production of the PHR events and to the improvement of the forecasts of the PHR events.展开更多
During the Heavy Rainfall Experiment in South China (HUAMEX) of 1998, a record heavy rainfall event occurred in the delta of the Pearl River during the 24 hours from 1200 UTC 8 June to 1200 UTC 9 June, 1998, and a 2...During the Heavy Rainfall Experiment in South China (HUAMEX) of 1998, a record heavy rainfall event occurred in the delta of the Pearl River during the 24 hours from 1200 UTC 8 June to 1200 UTC 9 June, 1998, and a 24-hour precipitation maximum of 574 mm was reported in Hong Kong. In this paper, some mesoscale characteristics of this heavy rainfall event are studied using data from satellites, Doppler radar, wind profilers, and automatic meteorological stations collected during HUAMEX. The following conclusions are drawn: (1) During this heavy rainfall event, there existed a favorable large-scale environment, that included a front with weak baroclinity in the heavy rain area and with an upward motion branch ahead of the front. (2) Unlike most extratropical or subtropical systems, the closed low in the geopotential height field does not exited. The obvious feature was that a southerly branch trough in the westerlies existed and Hong Kong was located ahead of the trough. (3) The rainfall areas were located in the warm sector ahead of the front, rather than in the frontal zone, which is one of the characteristics of heavy rainfalls during the pre-rainy season of South China. A southerly warm and moist current contributed to the heavy rainfall formation, including the transportation of rich water vapor and the creation of strong horizontal wind convergence. (4) The observations show that the heavy rainfall in Hong Kong was directly caused by a series of meso β systems rather than a mesoscale convective complex (MCC). These meso β systems moved with the steering current in the lower-mid troposphere, their life cycles were 3-6 hours, and their horizontal sizes were 10-100 km. (5) The disturbances in the lower and mid troposphere, especially that in the planetary boundary layer (PBL) were very shallow. However, they are a possible trigger mechanism for the occurrence and development of the mesoscale convective systems and related heavy rainfalls. Finally, a conceptual model of the heavy rainfall in the warm sector ahead of the front in South China is proposed.展开更多
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulate...The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.展开更多
The evolutionary process and structural characteristics of the atmospheric circulation and synoptic situation which caused the record heavy rainfall with a precipitation amount of 550 mm in Hat Yai, Thailand from 20 t...The evolutionary process and structural characteristics of the atmospheric circulation and synoptic situation which caused the record heavy rainfall with a precipitation amount of 550 mm in Hat Yai, Thailand from 20 to 23 November 2000 is studied. In the study, the modern three dimensional observational data were collected as completely as possible, and detailed analyses were made. It is revealed that the cold surges of the Asian winter monsoon that originate from Siberia can arrive at the lower latitudes, including South Thailand, Malaysia, Indonesia, cause strong heavy rainfall there, and interact with weather systems in the near-equatorial regions of the Southern Hemisphere. This is strongly supported by Chinese scientist's original finding in 1930s. The strong convective cloud clusters in the above areas are generated by the direct influence of the cold surges, and are related with the South China Sea disturbances in the lower troposphere. The maximum of the convergence of total moisture flux near South Thailand in the situation under study implies that the water vapour supply is abundant and very favorable to the occurrence of the heavy rainfall. The release of latent heat enhances the Hadley Circulation also. The feedback of the strong severe weather on climate indeed exists, and there are pronounced interactions between the multi-scale systems and between both hemispheres.展开更多
With the IAP/LASG GOALS model, the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST). Comparing the simulations of 1999 with the correspondi...With the IAP/LASG GOALS model, the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST). Comparing the simulations of 1999 with the corresponding ones of 1998 and the sensitivity experiments with different sea surface temperature anomalies (SSTA) at different ocean regions, the relationships between the floods in the Yangtze River valley and the SSTA in the Pacific and Indian Oceans are studied. The results show that the positive SSTA in the tropical Indian Ocean are a major contributor to the heavy rainfall and may be a very important index to predict the heavy rainfall over the Yangtze River valley in the summer. The simulations also show that the relationships between the SSTA in the tropical eastern Pacific and the heavy rainfall in the Yangtze River valley are very complicated, and the heavy rainfall in the Yangtze River valley can occur in both a decaying and an intensifying El Nino event and also in a La Nina event. However, the different SSTA of different periods in the above three cases play different parts.展开更多
In this study, the major features of a heavy rainfall event in the Yangtze River region on 3-7 June 2011 and its event-related large-scale circulation and predictability were studied. Both observational analysis and m...In this study, the major features of a heavy rainfall event in the Yangtze River region on 3-7 June 2011 and its event-related large-scale circulation and predictability were studied. Both observational analysis and model simulation were used, the latter being based on the Weather Research and Forecasting (WRF) model forced by NCEP Global Forecast System (GFS) datasets. It was found that, during 3-5 June, the western Pacific subtropical high apparently extended to the west and was much stronger, and the Indian summer monsoon trough was slightly weaker than in normal years. The east-west oriented shear line over the middle and lower reaches of the Yangtze River was favorable for the transportation and convergence of water vapor, and the precipitation band was located slightly to the south of the shear line. During 6-7 June, the western Pacific subtropical high retreated eastward, while the trough over the Okhotsk Sea deepened. The low vortex in Northeast China intensified, bringing much more cold air to the middle and lower reaches of the Yangtze River, and the shear line over this area moved slightly southward. The convection band moved southward and became weaker, so the rainfall during 6-7 June weakened and was located slightly to the south of the previous precipitation band. Many of the observed features, including background circulation and the distribution and amount of precipitation, were reproduced reasonably by the WRF, suggesting a feasibility of this model for forecasting extreme weather events in the Yangtze River region.展开更多
基金supported by the Korea Meteorological Administration Research and Development Program “Developing Application Technology for Atmospheric Research Aircraft” (Grant No. KMA2018-00222)
文摘This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.
基金Key R&D Program of Xizang Autonomous Region(XZ202101ZY0004G)National Natural Science Foundation of China(U2142202)+1 种基金National Key R&D Program of China(2022YFC3004104)Key Innovation Team of China Meteor-ological Administration(CMA2022ZD07)。
文摘Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.
基金Supported by the Research on the Spatial and Temporal Characteristics and Occurrence Mechanism of Rainstorm in Dehong (STIAP202244)Key Laboratory of Heavy Rainfall in River Basins,China Meteorological Administration (2023BHR-Y09)+1 种基金Project of Key Laboratory of Hydrometeorology,China Meteorological Administration (23SWQXZ009)National Natural Science Foundation of China (42075013,41765003,41665005).
文摘On August 7,2023,Mangshi City,Dehong Prefecture experienced a local heavy rainstorm,and the geological disaster caused by the heavy rainfall caused casualties and property losses.Based on the real-time observation data of automatic stations,Doppler weather radar detection and meteorological risk warning products,the disaster situation,social impact,forecast and early warning service,causes of heavy precipitation and forecast and early warning inspection were summarized and analyzed.The results show that the heavy rainfall was prominent locally,lasted for a long time and accumulated a large amount of rainfall.There were biases in model products,and it was difficult for forecasters to make subjective corrections in complex terrain.The analysis ideas and focus points of heavy rainfall forecast,the improvement ideas and technical schemes of forecast deviation,and the improvement ideas and suggestions of services were summarized.It provides a reference for the forecast and early warning of severe weather in the future.
基金National Natural Science Foundation of China(U2242203,41975138,41905047,42030610)the High-level Science and Technology Journals Projects of Guangdong Province(2021B1212020016)+2 种基金Natural Science Foundation of Guangdong Province(2019A1515010814,2021A1515011415)Science and Technology Research Project of Guangdong Meteorological Bureau(GRMC2020M01)the Joint Research Project for Meteorological Capacity Improvement(22NLTSQ003)。
文摘Warm-sector heavy rainfall(WR),shear-line heavy rainfall(SR),and frontal heavy rainfall(FR)are three types of rainfall that frequently occur during the pre-summer rainy season in south China.In this research,we investigated the differences in microphysical characteristics of heavy rainfall events during the period of 10-15 May 2022 based on the combined observations from 11 S-band polarimetric radars in south China.The conclusions are as follows:(1)WR has the highest radar echo top height,the strongest radar echo at all altitudes,the highest lightning density,and the most active ice-phase process,which suggests that the convection is the most vigorous in the WR,moderate in the FR,and the weakest in the SR.(2)Three types of rainfall are all marine-type precipitation,the massweighted mean diameter(Dm,mm)and the intercept parameter(Nw,mm^(-1) m^(-3))of the raindrops in the WR are the largest.(3)The WR possesses the highest proportion of graupel compared with the FR and SR,and stronger updrafts and more abundant water vapor supply may lead to larger raindrops during the melting and collision-coalescence processes.(4)Over all the heights,liquid and ice water content in the WR are higher than those in the SR and FR,the ratio of ice to liquid water content in the WR is as high as 27%when ZH exceeds 50 dBZ,definitely higher than that in the SR and FR,indicating that the active ice-phase process existing in the WR is conducive to the formation of heavy rainfall.
基金National key research and development program of China(2022YFC3003902)National Natural Science Foundation of China(U2242203,42075086,41975138)Guangdong Basic and Applied Basic Research Foundation(2023A1515011971,2021A1515011415,2019A1515010814)。
文摘During the April-June raining season,warm-sector heavy rainfall(WR) and frontal heavy rainfall(FR) often occur in the south of China,causing natural disasters.In this study,the microphysical characteristics of WR and FR events from 2016 to 2022 are analyzed by using 2-dimensional video disdrometer(2DVD) data in the south of China.The microphysical characteristics of WR and FR events are quite different.Compared with FR events,WR events have higher concentration of D<5.3 mm(especially D <1 mm),leading to higher rain rates.The mean values of Dmand lgNwof WR events are higher than that of FR events.The microphysical characteristics in different rain rate classes(C1:R~5-20 mm h-1,C2:R~20-50 mm h-1,C3:R~50-100 mm h^(-1),and C4:R> 100 mm h^(-1)) for WR and FR events are also different.Raindrops from C3 contribute the most to the precipitation of WR events,and raindrops from C2 contribute the most to the precipitation of FR events.For C2 and C3,compared with FR events,WR events have higher concentration of D <1 mm and D~3-4.5 mm.Moreover,the shape and slope(μ-A) relationships and the radar reflectivity and rain rate(Z-R) relationships of WR and FR events are quite different in each rain rate class.The investigation of the difference in microphysical characteristics between WR and FR events provide useful information for radar-based quantitative precipitation estimation and numerical prediction.
基金supported by Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42122033,41875055,and 42075006)Guangzhou Science and Technology Plan Projects(202002030346 and 202002030196).
文摘An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitation. The present study examines the roles of persistent low-level jets(LLJs) in maintaining the precipitation using surface station observations and reanalysis datasets. The LLJs triggered strong ascending motions and carried moisture mainly from the outflow of Typhoon In-fa(2021). The varying directions of the LLJs well corresponded to the meridional shifts of the rainfall. The precipitation rate reached a maximum during 20-21 July as the LLJs strengthened and expanded vertically into double LLJs, including synoptic-weather-system-related LLJs(SLLJs) at 850–700 hPa and boundary-layer jets(BLJs)at ~950 hPa. The coupling of the SLLJ and BLJ provided strong mid-and low-level convergence on 20 July, whereas the SLLJ produced mid-level divergence at its entrance that coupled with low-level convergence at the terminus of the BLJ on21 July. The formation mechanisms of the two types of LLJs are further examined. The SLLJs and the low-pressure vortex(or inverted trough) varied synchronously as a whole and were affected by the southwestward movement of the WPSH in the rainiest period. The persistent large total pressure gradient force at low levels also maintained the strength of low-level geostrophic winds, thus sustaining the BLJs on the synoptic scale. The results based on a Du-Rotunno 1D model show that the Blackadar and Holton mechanisms jointly governed the BLJ dynamics on the diurnal scale.
基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFC1506801 and 2018YFF0300102)the National Natural Science Foundation of China(NSFC)(Grant No.42105013).
文摘A record-breaking heavy rainfall event that occurred in Zhengzhou,Henan province during 19–21 July 2021 is simulated using the Weather Research and Forecasting Model,and the large-scale precipitation efficiency(LSPE)and cloud-microphysical precipitation efficiency(CMPE)of the rainfall are analyzed based on the model results.Then,the key physical factors that influenced LSPE and CMPE,and the possible mechanisms for the extreme rainfall over Zhengzhou are explored.Results show that water vapor flux convergence was the key factor that influenced LSPE.Water vapor was transported by the southeasterly winds between Typhoon In-Fa(2021)and the subtropical high,and the southerly flow of Typhoon Cempaka(2021),and converged in Zhengzhou due to the blocking by the Taihang and Funiu Mountains in western Henan province.Strong moisture convergence centers were formed on the windward slope of the mountains,which led to high LSPE in Zhengzhou.From the perspective of CMPE,the net consumption of water vapor by microphysical processes was the key factor that influenced CMPE.Quantitative budget analysis suggests that water vapor was mainly converted to cloud water and ice-phase particles and then transformed to raindrops through melting of graupel and accretion of cloud water by rainwater during the heavy precipitation stage.The dry intrusion in the middle and upper levels over Zhengzhou made the high potential vorticity descend from the upper troposphere and enhanced the convective instability.Moreover,the intrusion of cold and dry air resulted in the supersaturation and condensation of water vapor,which contributed to the heavy rainfall in Zhengzhou.
基金supported by the National Key R&D Program of China(Grant Nos.2017YFC1501803 and 2017YFC1502102)。
文摘Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional observations for the“21·7”Henan extremely heavy rainfall is analyzed and compared with a baseline test that assimilates only conventional observations in this study.The results show that the 24-h cumulative precipitation forecast by the assimilation experiment with the addition of the AGRI exceeds 500 mm,compared to a maximum value of 532.6 mm measured by the national meteorological stations,and that the location of the maximum precipitation is consistent with the observations.The results for the short periods of intense precipitation processes are that the simulation of the location and intensity of the 3-h cumulative precipitation is also relatively accurate.The analysis increment shows that the main difference between the two sets of assimilation experiments is over the ocean due to the additional ocean observations provided by FY-4A,which compensates for the lack of ocean observations.The assimilation of satellite data adjusts the vertical and horizontal wind fields over the ocean by adjusting the atmospheric temperature and humidity,which ultimately results in a narrower and stronger WV transport path to the center of heavy precipitation in Zhengzhou in the lower troposphere.Conversely,the WV convergence and upward motion in the control experiment are more dispersed;therefore,the precipitation centers are also correspondingly more dispersed.
基金National Natural Science Foundation of China(42075014)Science and Technology Key Project of Guangdong Meteorological Bureau(GRMC2020Z02,GRMCGS202101)+1 种基金Natural Science Foundation of Guangdong Province,China(2021A1515011539)Forecasters Project of China Meteorological Administration(CMAYBY2019-080)。
文摘An extreme monsoonal heavy rainfall event lasted for nine days and recurred in the interior of northern south China from June 13 to 21, 2022. Using regional meteorological stations and ERA5 reanalysis data, the causes of this extreme monsoonal rainfall event in south China were analyzed and diagnosed. The results are shown as follows. A dominant South Asian high tended to be stable near the Qinghai-Tibet Plateau, providing favorable upper-level dispersion conditions for the occurrence of heavy rainfall in south China. A western Pacific subtropical high dominated the eastern part of the South China Sea, favoring stronger and more northward transport of water vapor to the northern part of south China at lower latitudes than normal. The continuous heavy precipitation event can be divided into two stages. The first stage(June 13-15) was the frontal heavy rainfall caused by cold air(brought by an East Asian trough)from the mid-latitudes that converged with a monsoonal airflow. The heavy rains occurred mostly in the area near a shear in front of the center of a synoptic-system-related low-level jet(SLLJ), and the jet stream and precipitation were strongest in the daytime. The second stage(June 16-21) was the warm-sector heavy rainfall caused by a South China Sea monsoonal low-level jet penetrating inland. The heavy rainfall occurred on the windward slope of the Nanling Mountains and in the northern part of a boundary layer jet(BLJ). The BLJ experienced five nighttime enhancements, corresponding well with the enhancement of the rainfall center, showing significant nighttime heavy rainfall characteristics. Finally, a conceptual diagram of inland-type warm-sector heavy rainfall in south China is summarized.
基金National Natural Science Foundation of China(42230612,41905071,41620104009)。
文摘A heavy rainfall event in south China was simulated by the Weather Research and Forecasting(WRF) model with three microphysics schemes, including the Morrison scheme, Thompson scheme, and Milbrandt and Yau scheme(MY), which aim to evaluate the capability to reproduce the precipitation and radar echo reflectivity features, and to evaluate evaluate their differences in microphysics and the associated thermodynamical and dynamical feedback. Results show that all simulations reproduce the main features crucial for rainfall formation. Compared with the observation, the MY scheme performed better than the other two schemes in terms of intensity and spatial distribution of rainfall. Due to abundant water vapor, the accretion of cloud droplets by raindrops was the dominant process in the growth of raindrops while the contribution of melting was a secondary effect. Riming processes, in which frozen hydrometeors collect cloud droplets mainly, contributed more to the growth of frozen hydrometeors than the Bergeron process. Extremely abundant snow and ice were produced in the Thompson and MY schemes respectively by a deposition process. The MY scheme has the highest condensation and evaporation, but the lowest deposition. As a result, in the MY scheme, the enhanced vertical gradient of condensation heating and evaporation cooling at low levels produces strong positive and weak negative potential vorticity in Guangdong, and may favor the formation of the enhanced rainfall center over there.
基金National Natural Science Foundation of China(41975001)Natural Science Foundation of Fujian(2023J01186,2022J01445)+1 种基金Science Project of Fujian Meteor-ological Bureau(2021BY01,2021YJ10,3502Z20214ZD4008)Fujian Meteorological Bureau Youth Team Foundation。
文摘In August 2021,a warm-sector heavy rainfall event under the control of the western Pacific subtropical high occurred over the southeastern coast of China.Induced by a linearly shaped mesoscale convective system(MCS),this heavy rainfall event was characterized by localized heavy rainfall,high cumulative rainfall,and extreme rainfall intensity.Using various observational data,this study first analyzed the precipitation features and radar reflectivity evolution.It then examined the role of environmental conditions and the relationship between the ambient wind field and convective initiation(CI).Furthermore,the dynamic lifting mechanism within the organization of the MCS was revealed by em-ploying multi-Doppler radar retrieval methods.Results demonstrated that the linearly shaped MCS,developed under the influence of the subtropical high,was the primary cause of the extreme rainfall event.High temperatures and humidity,coupled with the convergence of low-level southerly winds,established the environmental conditions for MCS develop-ment.The superposition of the convergence zone generated by the southerly winds in the boundary layer(925-1000 hPa)and the divergence zone in the lower layer(700-925 hPa)supplied dynamic lifting conditions for CI.Additionally,a long-term shear line(southerly southwesterly)offered favorable conditions for the organization of the linearly shaped MCS.The combined effects of strengthening low-level southerly winds and secondary circulation in mid-upper levels were influential factors in the development and maintenance of the linearly shaped MCS.
文摘An extensive rainfall occurred in central and eastern China during 23-24 April, 2021. This research mainly uses the reanalysis data of NCEP/NCAR every 6 hours to analyze this heavy rainfall weather process. The results show that the main reason for this precipitation process is the shear formed between the cold air and the warm and humid air flow in the southwest. The low temperature on the ground allows the warm and humid air flow to lift up to form precipitation. The shear system is strengthened to a low vortex, which greatly strengthens the vertical ascent movement. Good water vapor and dynamic conditions form a large range of heavy rainfall.
文摘Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord Gi statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.
基金supported by the key international collaborative project of Natural Science Foundation of China(No.41520104002)
文摘The initiation mechanism of debris flow is regarded as the key step in understanding the debrisflow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine particles in soil will lead to soil failure and then develop into debris flow. Based on this hypothesis and considering the three factors of slope gradient, rainfall duration and rainfall intensity, 16 flume experiments were designed using the method of orthogonal design and completed in a laboratory. Particle composition changes in slope toe, volumetric water content, fine particle movement characteristics and soil failure mechanism were analyzed and understood as follows: the soil has complex, random and unstable structures, which causes remarkable pore characteristics of poor connectivity, non-uniformity and easy variation. The major factors that influence fine particle migration are rainfall intensity and slope. Rainfall intensity dominates particle movement, whereby high intensity rainfall induces a large number of mass movement and sharp fluctuation, causing more fine particles to accumulate at the steep slope toe. The slope toe plays an important role in water collection and fine particleaccumulation. Both fine particle migration and coarse particle movement appears similar fluctuation. Fine particle migration is interrupted in unconnected pores, causing pore blockage and fine particle accumulation, which then leads to the formation of a weak layer and further soil failure or collapses. Fine particle movement also causes debris flow formation in two ways: movement on the soil surface and migration inside the soil. The results verify the hypothesis that the function of fine particle migration in soil failure process is conducive for further understanding the formation mechanism of soil failure and debris flow initiation.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40575015.
文摘Persistent heavy rainfall events (PHR events) comprise one category of weather- and climate- related extreme events. Based on daily rainfall data measured in China during the period of 1951-2004, several quantitative criteria were developed to define PHR events by means of their precipitation intensity, temporal duration, spatial extent and persistence. Then a semi-objective classification based on these criteria was applied to summer daily rainfall data to identify all PHR events. A total of 197 events were observed during the study period. All events were further classified into 5 categories according to their comprehensive intensity; into 3 types according to their circulation regime; and into 8 groups according to the geographic locations of their rainbands. Based on these different classifications, finally, the behaviors of 130 PHR events identified as the most severe, severe and moderate categories since the year of 1951, including characteristics of the spatial and temporal distributions of their frequencies, intensities, and rainbands, were investigated in order to present a comprehensive description of the PHR events. The results will be helpful to the future study of revealing and understanding the processes that govern the production of the PHR events and to the improvement of the forecasts of the PHR events.
基金National Key Basic Research and Development Project of China (Project No. 2004CB418301) the National Natural Science Foundation of China under Grant No. 40405008.
文摘During the Heavy Rainfall Experiment in South China (HUAMEX) of 1998, a record heavy rainfall event occurred in the delta of the Pearl River during the 24 hours from 1200 UTC 8 June to 1200 UTC 9 June, 1998, and a 24-hour precipitation maximum of 574 mm was reported in Hong Kong. In this paper, some mesoscale characteristics of this heavy rainfall event are studied using data from satellites, Doppler radar, wind profilers, and automatic meteorological stations collected during HUAMEX. The following conclusions are drawn: (1) During this heavy rainfall event, there existed a favorable large-scale environment, that included a front with weak baroclinity in the heavy rain area and with an upward motion branch ahead of the front. (2) Unlike most extratropical or subtropical systems, the closed low in the geopotential height field does not exited. The obvious feature was that a southerly branch trough in the westerlies existed and Hong Kong was located ahead of the trough. (3) The rainfall areas were located in the warm sector ahead of the front, rather than in the frontal zone, which is one of the characteristics of heavy rainfalls during the pre-rainy season of South China. A southerly warm and moist current contributed to the heavy rainfall formation, including the transportation of rich water vapor and the creation of strong horizontal wind convergence. (4) The observations show that the heavy rainfall in Hong Kong was directly caused by a series of meso β systems rather than a mesoscale convective complex (MCC). These meso β systems moved with the steering current in the lower-mid troposphere, their life cycles were 3-6 hours, and their horizontal sizes were 10-100 km. (5) The disturbances in the lower and mid troposphere, especially that in the planetary boundary layer (PBL) were very shallow. However, they are a possible trigger mechanism for the occurrence and development of the mesoscale convective systems and related heavy rainfalls. Finally, a conceptual model of the heavy rainfall in the warm sector ahead of the front in South China is proposed.
基金This research was supported by the National Natural Science Foundation of China under Grant Nos. 40325014, 40333031SRFDP, TRAP0YT, FANEDD 11999, and under the support of The Key Scientific and Technological Project of the Ministry of Education The State Key Basic Research Program (Grant No. 2004CB18300).
文摘The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.
基金The other authors are grateful for the support from the China National Science Foundation(Grant No.40233027)
文摘The evolutionary process and structural characteristics of the atmospheric circulation and synoptic situation which caused the record heavy rainfall with a precipitation amount of 550 mm in Hat Yai, Thailand from 20 to 23 November 2000 is studied. In the study, the modern three dimensional observational data were collected as completely as possible, and detailed analyses were made. It is revealed that the cold surges of the Asian winter monsoon that originate from Siberia can arrive at the lower latitudes, including South Thailand, Malaysia, Indonesia, cause strong heavy rainfall there, and interact with weather systems in the near-equatorial regions of the Southern Hemisphere. This is strongly supported by Chinese scientist's original finding in 1930s. The strong convective cloud clusters in the above areas are generated by the direct influence of the cold surges, and are related with the South China Sea disturbances in the lower troposphere. The maximum of the convergence of total moisture flux near South Thailand in the situation under study implies that the water vapour supply is abundant and very favorable to the occurrence of the heavy rainfall. The release of latent heat enhances the Hadley Circulation also. The feedback of the strong severe weather on climate indeed exists, and there are pronounced interactions between the multi-scale systems and between both hemispheres.
文摘With the IAP/LASG GOALS model, the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST). Comparing the simulations of 1999 with the corresponding ones of 1998 and the sensitivity experiments with different sea surface temperature anomalies (SSTA) at different ocean regions, the relationships between the floods in the Yangtze River valley and the SSTA in the Pacific and Indian Oceans are studied. The results show that the positive SSTA in the tropical Indian Ocean are a major contributor to the heavy rainfall and may be a very important index to predict the heavy rainfall over the Yangtze River valley in the summer. The simulations also show that the relationships between the SSTA in the tropical eastern Pacific and the heavy rainfall in the Yangtze River valley are very complicated, and the heavy rainfall in the Yangtze River valley can occur in both a decaying and an intensifying El Nino event and also in a La Nina event. However, the different SSTA of different periods in the above three cases play different parts.
基金supported by the Major State Basic Research Development Program of China(973Program) under Grant No.2009CB421406the National Natural Science Foundation of China under Grant Nos.41130103 and 40821092the Norwegian Research Council"East Asia DecCen"Project
文摘In this study, the major features of a heavy rainfall event in the Yangtze River region on 3-7 June 2011 and its event-related large-scale circulation and predictability were studied. Both observational analysis and model simulation were used, the latter being based on the Weather Research and Forecasting (WRF) model forced by NCEP Global Forecast System (GFS) datasets. It was found that, during 3-5 June, the western Pacific subtropical high apparently extended to the west and was much stronger, and the Indian summer monsoon trough was slightly weaker than in normal years. The east-west oriented shear line over the middle and lower reaches of the Yangtze River was favorable for the transportation and convergence of water vapor, and the precipitation band was located slightly to the south of the shear line. During 6-7 June, the western Pacific subtropical high retreated eastward, while the trough over the Okhotsk Sea deepened. The low vortex in Northeast China intensified, bringing much more cold air to the middle and lower reaches of the Yangtze River, and the shear line over this area moved slightly southward. The convection band moved southward and became weaker, so the rainfall during 6-7 June weakened and was located slightly to the south of the previous precipitation band. Many of the observed features, including background circulation and the distribution and amount of precipitation, were reproduced reasonably by the WRF, suggesting a feasibility of this model for forecasting extreme weather events in the Yangtze River region.