In heterogeneous networks(Het Nets), it is desirable to offload users from macro cells to small cells to achieve load balancing. However, the offloaded users suffer a strong inter-tier interference. To guarantee the...In heterogeneous networks(Het Nets), it is desirable to offload users from macro cells to small cells to achieve load balancing. However, the offloaded users suffer a strong inter-tier interference. To guarantee the performance of the offloaded users, the interference from macro cells should be carefully managed. In this paper, we jointly optimize load balancing and interference coordination in multi-antenna Het Nets. Different from previous works, instead of almost blank subframes(ABS) on which the macro cells waste time resource, the macro cells suppress the interference to the offloaded users by zero-forcing beamforming(ZFBF) on interference nulling subframes(INS). Considering user association cannot be conduct frequently, we derive the long-term throughput of users over Rayleigh fading channels while previous works focused on instantaneous rate. From the perspective of the spectrum efficiency and user fairness, we formulate a long-term network-wide utility maximization problem. By decomposing the problem into two subproblems, we propose an efficient joint load balancing and interference coordination strategy. Simulation results show that our proposal can achieve good system performance gains over counterparts in term of the network utility, cell edge throughput and average throughput.展开更多
In this paper,a numerical code,RFPA2D(rock failure process analysis),was used to simulate the initiation and propagation of fractures around a pre-existing single cavity and multiple cavities in brittle rocks.Both s...In this paper,a numerical code,RFPA2D(rock failure process analysis),was used to simulate the initiation and propagation of fractures around a pre-existing single cavity and multiple cavities in brittle rocks.Both static and dynamic loads were applied to the rock specimens to investigate the mechanism of fracture evolution around the cavities for different lateral pressure coefficients.In addition,characteristics of acoustic emission(AE) associated with fracture evolution were simulated.Finally,the evolution and interaction of fractures between multiple cavities were investigated with consideration of stress redistribution and transference in compressive and tensile stress fields.The numerically simulated results reproduced primary tensile,remote,and shear crack fractures,which are in agreement with the experimental results.Moreover,numerical results suggested that both compressive and tensile waves could influence the propagation of tensile cracks;in particular,the reflected tensile wave accelerated the propagation of tensile cracks.展开更多
基金supported by the National Natural Science Foundation of China (61672484)the National Hi-Tech Research and Development Program of China (2014AA01A702)
文摘In heterogeneous networks(Het Nets), it is desirable to offload users from macro cells to small cells to achieve load balancing. However, the offloaded users suffer a strong inter-tier interference. To guarantee the performance of the offloaded users, the interference from macro cells should be carefully managed. In this paper, we jointly optimize load balancing and interference coordination in multi-antenna Het Nets. Different from previous works, instead of almost blank subframes(ABS) on which the macro cells waste time resource, the macro cells suppress the interference to the offloaded users by zero-forcing beamforming(ZFBF) on interference nulling subframes(INS). Considering user association cannot be conduct frequently, we derive the long-term throughput of users over Rayleigh fading channels while previous works focused on instantaneous rate. From the perspective of the spectrum efficiency and user fairness, we formulate a long-term network-wide utility maximization problem. By decomposing the problem into two subproblems, we propose an efficient joint load balancing and interference coordination strategy. Simulation results show that our proposal can achieve good system performance gains over counterparts in term of the network utility, cell edge throughput and average throughput.
基金granted by the National Science Foundation (NSF) under Grant CMMI-0408390 and NSF CAREER Award CMMI-0644552the American Chemical Society Petroleum Research Foundation under Grant PRF-44468-G9+3 种基金National Natural Science Foundation of China under Grant No.51050110143granted by Huoyingdong Educational Foundation under Grant No.114024Jiangsu Natural Science Foundation under Grant No.SBK200910046granted by Jiangsu Postdoctoral Foundation under Grant No.0901005C
文摘In this paper,a numerical code,RFPA2D(rock failure process analysis),was used to simulate the initiation and propagation of fractures around a pre-existing single cavity and multiple cavities in brittle rocks.Both static and dynamic loads were applied to the rock specimens to investigate the mechanism of fracture evolution around the cavities for different lateral pressure coefficients.In addition,characteristics of acoustic emission(AE) associated with fracture evolution were simulated.Finally,the evolution and interaction of fractures between multiple cavities were investigated with consideration of stress redistribution and transference in compressive and tensile stress fields.The numerically simulated results reproduced primary tensile,remote,and shear crack fractures,which are in agreement with the experimental results.Moreover,numerical results suggested that both compressive and tensile waves could influence the propagation of tensile cracks;in particular,the reflected tensile wave accelerated the propagation of tensile cracks.