The high renewable penetrated power system has severe frequency regulation problems.Distributed resources can provide frequency regulation services but are limited by com-munication time delay.This paper proposes a co...The high renewable penetrated power system has severe frequency regulation problems.Distributed resources can provide frequency regulation services but are limited by com-munication time delay.This paper proposes a communication resources allocation model to reduce communication time delay in frequency regulation service.Communication device resources and wireless spectrum resources are allocated to distributed resources when they participate in frequency regulation.We reveal impact of communication resources allocation on time delay reduction and frequency regulation performance.Besides,we study communication resources allocation solution in high renewable energy penetrated power systems.We provide a case study based on the HRP-38 system.Results show communication time delay decreases distributed resources'ability to provide frequency regulation service.On the other hand,allocating more communication resources to distributed resources'communica-tion services improves their frequency regulation performance.For power systems with renewable energy penetration above 70%,required communications resources are about five times as many as 30%renewable energy penetrated power systems to keep frequency performance the same.Index Terms-Communication resources allocation,commun-ication time delay,distributed resource,frequency regulation,high renewable energy penetrated power system.展开更多
Power systems are moving toward a low-carbon or carbon-neutral future where high penetration of renewables is expected.With conventional fossil-fueled synchronous generators in the transmission network being replaced ...Power systems are moving toward a low-carbon or carbon-neutral future where high penetration of renewables is expected.With conventional fossil-fueled synchronous generators in the transmission network being replaced by renewable energy generation which is highly distributed across the entire grid,new challenges are emerging to the control and stability of large-scale power systems.New analysis and control methods are needed for power systems to cope with the ongoing transformation.In the CSEE JPES forum,six leading experts were invited to deliver keynote speeches,and the participating researchers and professionals had extensive exchanges and discussions on the control and stability of power systems.Specifically,potential changes and challenges of power systems with high penetration of renewable energy generation were introduced and explained,and advanced control methods were proposed and analyzed for the transient stability enhancement of power grids.展开更多
The current status of wind power and the energy infrastructure in Denmark is reviewed in this paper.The reasons for why Denmark is a world leader in wind power are outlined.The Danish government is aiming to achieve 1...The current status of wind power and the energy infrastructure in Denmark is reviewed in this paper.The reasons for why Denmark is a world leader in wind power are outlined.The Danish government is aiming to achieve 100%renewable energy generation by 2050.A major challenge is balancing load and generation.In addition,the current and future solutions of enhancing wind power penetration through optimal use of cross-energy sector flexibility,so-called indirect electric energy storage options,are investigated.A conclusion is drawn with a summary of experiences and lessons learned in Denmark related to wind power development.展开更多
为解决电力系统暂态过电压风险评估中输入特征集构建合理性不足、强相关性差等问题,提出一种考虑新能源多场站短路比MRSCR(multiple renewable energy stations short circuit ratio)的暂态过电压风险评估方法。首先,通过分析暂态过电...为解决电力系统暂态过电压风险评估中输入特征集构建合理性不足、强相关性差等问题,提出一种考虑新能源多场站短路比MRSCR(multiple renewable energy stations short circuit ratio)的暂态过电压风险评估方法。首先,通过分析暂态过电压数学模型,发现MRSCR与暂态过电压呈负相关性;然后,综合考虑MRSCR与其他影响系统暂态过电压的关键因素,构建多维输入特征集;最后,通过卷积神经网络建立输入特征与暂态过电压的高维映射,实现系统暂态过电压风险的快速、准确评估,并通过算例分析验证了所提方法的有效性、可行性。展开更多
基金supported in part by the National Key R&D Program of China(No.2021YFB2401200)the National Natural Science Foundation of China Enterprise Innovation and Development Joint Fund(No.U21B2002).
文摘The high renewable penetrated power system has severe frequency regulation problems.Distributed resources can provide frequency regulation services but are limited by com-munication time delay.This paper proposes a communication resources allocation model to reduce communication time delay in frequency regulation service.Communication device resources and wireless spectrum resources are allocated to distributed resources when they participate in frequency regulation.We reveal impact of communication resources allocation on time delay reduction and frequency regulation performance.Besides,we study communication resources allocation solution in high renewable energy penetrated power systems.We provide a case study based on the HRP-38 system.Results show communication time delay decreases distributed resources'ability to provide frequency regulation service.On the other hand,allocating more communication resources to distributed resources'communica-tion services improves their frequency regulation performance.For power systems with renewable energy penetration above 70%,required communications resources are about five times as many as 30%renewable energy penetrated power systems to keep frequency performance the same.Index Terms-Communication resources allocation,commun-ication time delay,distributed resource,frequency regulation,high renewable energy penetrated power system.
文摘Power systems are moving toward a low-carbon or carbon-neutral future where high penetration of renewables is expected.With conventional fossil-fueled synchronous generators in the transmission network being replaced by renewable energy generation which is highly distributed across the entire grid,new challenges are emerging to the control and stability of large-scale power systems.New analysis and control methods are needed for power systems to cope with the ongoing transformation.In the CSEE JPES forum,six leading experts were invited to deliver keynote speeches,and the participating researchers and professionals had extensive exchanges and discussions on the control and stability of power systems.Specifically,potential changes and challenges of power systems with high penetration of renewable energy generation were introduced and explained,and advanced control methods were proposed and analyzed for the transient stability enhancement of power grids.
文摘The current status of wind power and the energy infrastructure in Denmark is reviewed in this paper.The reasons for why Denmark is a world leader in wind power are outlined.The Danish government is aiming to achieve 100%renewable energy generation by 2050.A major challenge is balancing load and generation.In addition,the current and future solutions of enhancing wind power penetration through optimal use of cross-energy sector flexibility,so-called indirect electric energy storage options,are investigated.A conclusion is drawn with a summary of experiences and lessons learned in Denmark related to wind power development.
文摘为解决电力系统暂态过电压风险评估中输入特征集构建合理性不足、强相关性差等问题,提出一种考虑新能源多场站短路比MRSCR(multiple renewable energy stations short circuit ratio)的暂态过电压风险评估方法。首先,通过分析暂态过电压数学模型,发现MRSCR与暂态过电压呈负相关性;然后,综合考虑MRSCR与其他影响系统暂态过电压的关键因素,构建多维输入特征集;最后,通过卷积神经网络建立输入特征与暂态过电压的高维映射,实现系统暂态过电压风险的快速、准确评估,并通过算例分析验证了所提方法的有效性、可行性。