Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
A computer model for the performance simulation of vehicles equipped with traction drive continuously variable transmission (CVT) is presented. The model integrates the traction drive CVT subsystem into an existing ...A computer model for the performance simulation of vehicles equipped with traction drive continuously variable transmission (CVT) is presented. The model integrates the traction drive CVT subsystem into an existing overall vehicle system. The characteristics of engine output torque are formulated using neural networks, and torque converter is modeled using lookup tables. Component inputs and outputs are coupled in the dynamic equations and interfaces in the powertrain system. The model simulation can provide evaluation of vehicle performance in drivability, fuel economy and emission levels for various drive ranges prior to the prototyping of the vehicle. As a design tool, the model assists engineers in understanding the effect ofpowertrain components on vehicle performance and making decisions in the selection of key design parameters. The model is implemented in the MATLAB/Simulink environment. The performance simulation of a test vehicle is included as a numerical example to illustrate the effectiveness of the model.展开更多
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
基金This project is supported by University Research Program of Ford MotorCompany and Visiting Scholar Program of State Key Laboratory on Me-chanical Transmission of Chongqing University, China.
文摘A computer model for the performance simulation of vehicles equipped with traction drive continuously variable transmission (CVT) is presented. The model integrates the traction drive CVT subsystem into an existing overall vehicle system. The characteristics of engine output torque are formulated using neural networks, and torque converter is modeled using lookup tables. Component inputs and outputs are coupled in the dynamic equations and interfaces in the powertrain system. The model simulation can provide evaluation of vehicle performance in drivability, fuel economy and emission levels for various drive ranges prior to the prototyping of the vehicle. As a design tool, the model assists engineers in understanding the effect ofpowertrain components on vehicle performance and making decisions in the selection of key design parameters. The model is implemented in the MATLAB/Simulink environment. The performance simulation of a test vehicle is included as a numerical example to illustrate the effectiveness of the model.