In order to study how welding parameters affect welding quality and droplet transfer, a synchronous acquisition and analysis system is established to acquire and analyze electrical signal and instantaneous images of d...In order to study how welding parameters affect welding quality and droplet transfer, a synchronous acquisition and analysis system is established to acquire and analyze electrical signal and instantaneous images of droplet transfer simultaneously, which is based on a self-developed soft-switching inverter. On the one hand, welding current and voltage signals are acquired and analyzed by a self-developed dynamic wavelet analyzer. On the other hand, images are filtered and optimized after they are captured by high-speed camera. The results show that instantaneous waveforms and statistical data of electrical signal contribute to make an overall assessment of welding quality, and that optimized high-speed images allow a visual and clear observation of droplet transfer process. The analysis of both waveforms and images leads to a further research on droplet transfer mechanism and provides a basis for precise control of droplet transfer.展开更多
The influence of ramps on the transient rolling contact characteristics and damage mechanisms of switch rails remains unclear,presenting substantial challenges to the safety of railway operations.To this end,this pape...The influence of ramps on the transient rolling contact characteristics and damage mechanisms of switch rails remains unclear,presenting substantial challenges to the safety of railway operations.To this end,this paper constructs a transient rolling contact finite element model of the wheel-rail in switch under different ramps using ANSYS/LSDYNA method,and analyzes the tribology and damage characteristics when the wheel passes through the switch at a uniform speed.Our research findings reveal that the vibration induced in the switch rail during the wheel load transfer process leads to a step-like increase in the contact force.Moreover,the interaction between the wheel and the rail primarily involves slip contact,which may significantly contribute to the formation of corrugations on the switch rail.Additionally,the presence of large ramps exacerbates switch rail wear and rolling contact fatigue,resulting in a notable 13.2%increase in switch rail damage under 40‰ramp conditions compared to flat(0‰ramp)conditions.Furthermore,the large ramps can alter the direction of crack propagation,ultimately causing surface spalling of the rail.Therefore,large ramps intensify the dynamic interactions during the wheel load transfer process,further aggravating the crack and spalling damage to the switch rails.展开更多
Purpose–High-speed turnouts are more complex in structure and thus may cause abnormal vibration of highspeed train car body,affecting driving safety and passenger riding experience.Therefore,it is necessary to analyz...Purpose–High-speed turnouts are more complex in structure and thus may cause abnormal vibration of highspeed train car body,affecting driving safety and passenger riding experience.Therefore,it is necessary to analyze the data characteristics of continuous hunting of high-speed trains passing through turnouts and propose a diagnostic method for engineering applications.Design/methodology/approach–First,Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)is performed to determine the first characteristic component of the car body’s lateral acceleration.Then,the Short-Time Fourier Transform(STFT)is performed to calculate the marginal spectra.Finally,the presence of a continuous hunting problem is determined based on the results of the comparison calculations and diagnostic thresholds.To improve computational efficiency,permutation entropy(PE)is used as a fast indicator to identify turnouts with potential problems.Findings–Under continuous hunting conditions,the PE is less than 0.90;the ratio of the maximum peak value of the signal component to the original signal peak value exceeded 0.7,and there is an energy band in the STFT time-frequency map,which corresponds to a frequency distribution range of 1–2 Hz.Originality/value–The research results have revealed the lateral vibration characteristics of the high-speed train’s car body during continuous hunting when passing through turnouts.On this basis,an effective diagnostic method has been proposed.With a focus on practical engineering applications,a rapid screening index for identifying potential issues has been proposed,significantly enhancing the efficiency of diagnostic processes.展开更多
In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h...In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h),followed by tempering at two different temperatures(200,500℃).For performance testing,a ball-on-disk wear test setup was utilized and a total of 6 groups of samples were examined.The effects of cryo-treatment and tempering on microstructure were revealed through microstructural analysis with scanning electron microscopy(SEM),X-ray(XRD diffraction),and Rietveld analysis.Additionally,the hardness of the punches was measured with microhardness measurements.The optimal wear resistance was observed in the 36 h deep cryo-treated and 200℃tempered samples.The characterization study indicates that by cryogenic treatment a significant portion of the retained austenite transformed into martensite and secondary carbides formed,resulting in improved wear resistance and a slight increase in hardness.展开更多
Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated opt...Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated optimization strategy to reduce wheel–rail contact fatigue damage.Design/methodology/approach–Taking a small-radius curve of a high-speed railway as the research object,field measurements were conducted to obtain track parameters and wheel–rail profiles.A coupled vehicle-track dynamics model was established.Multiple numerical experiments were designed using the Latin Hypercube Sampling method to extract wheel-rail creepage indicators and construct a parameter-creepage response surface model.Findings–Key service parameters affecting wheel–rail creepage were identified,including the matching relationship between curve geometry and vehicle speed and rail profile parameters.The influence patterns of various parameters on wheel–rail creepage were revealed through response surface analysis,leading to the establishment of parameter optimization criteria.Originality/value–This study presents the systematic investigation of wheel–rail creepage characteristics under multi-parameter coupling in high-speed railway curves.A response surface-based parameter-creepage relationship model was established,and a multi-parameter coordinated optimization strategy was proposed.The research findings provide theoretical guidance for controlling wheel–rail contact fatigue damage and optimizing wheel–rail profiles in high-speed railway curves.展开更多
Based on the investigation of mechanical response and microstructure evolution of a commercial 7003 aluminum alloy under high-speed impact,a new simple and effective method was proposed to determine the critical strai...Based on the investigation of mechanical response and microstructure evolution of a commercial 7003 aluminum alloy under high-speed impact,a new simple and effective method was proposed to determine the critical strain required for the nucleation of adiabatic shear band(ASB).The deformation results of cylindrical and hat-shaped samples show that the critical strain required for ASB nucleation corresponds to the strain at the first local minimum after peak stress on the first derivative curve of true stress−true strain.The method of determining the critical strain for the nucleation of ASB through the first derivative of the flow stress curve is named the first derivative method.The proposed first derivative method is not only applicable to the 7003 aluminum alloy,but also to other metal materials,such as commercial purity titanium,WY-100 steel,and AM80 magnesium alloy.This proves that it has strong universality.展开更多
In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision ...In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision parameter multi-step prediction model is proposed to establish a two-hop relay communication system model between the high-speed train and the base station.Firstly,the switching algorithm uses convolution neural network(CNN)to extract the time sequence characteristics of decision parameters.Then,it learns the mapping relationship between feature information and decision parameters based on WaveNet and combining with rolling prediction method to realize multi-step prediction of decision parameters.Finally,dual-antenna communication mode is adopted to realize dual-link communication.The simulation results show that the proposed handover algorithm can improve handover trigger rate and handover success rate.展开更多
In high-speed railway(HSR)wireless communication,the rapid channel changes and limited high-capacity access cause significant impact on the link performance.Meanwhile,the Doppler shift caused by high mobility leads to...In high-speed railway(HSR)wireless communication,the rapid channel changes and limited high-capacity access cause significant impact on the link performance.Meanwhile,the Doppler shift caused by high mobility leads to the inter-carrier interference.In this paper,we propose a reconfigurable intelligent surface(RIS)-assisted receive spatial modulation(SM)scheme based on the spatial-temporal correlated HSR Rician channel.The characteristics of SM and the phase shift adjustment of RIS are used to mitigate the performance degradation in high mobility scenarios.Considering the influence of channel spatial-temporal correlation and Doppler shift,the effects of different parameters on average bit error rate(BER)performance and upper bound of ergodic capacity are analyzed.Therefore,a joint antenna and RIS-unit selection algorithm based on the antenna removal method is proposed to increase the capacity performance of communication links.Numerical results show that the proposed RIS-assisted receive SM scheme can maintain high transmission capacity compared to the conventional HSR-SM scheme,whereas the degradation of BER performance can be compensated by arranging a large number of RIS-units.In addition,selecting more RIS-units has better capacity performance than activating more antennas in the low signal-to-noise ratio regions.展开更多
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it...High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.展开更多
Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the...Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the approach bridge.For long-span railway bridges,it must also be coordinated with rail expansion joint(REJ),which is necessary to accommodate the expansion and contraction of,and reducing longitudinal stress in,the rails.The main aim of this study is to present analysis of recent developments in the research and application of BEJs in high-speed railway(HSR)long-span bridges in China,and to propose a performance-based integral design method for BEJs used with REJs,from both theoretical and engineering perspectives.Design/methodology/approach–The study first presents a summary on the application and maintenance of BEJs in HSR long-span bridges in China representing an overview of their state of development.Results of a survey of typical BEJ faults were analyzed,and field testing was conducted on a railway cable-stayed bridge in order to obtain information on the major mechanical characteristics of its BEJ under train load.Based on the above,a performance-based integral design method for BEJs with maximum expansion range 1600 mm(±800 mm),was proposed,covering all stages from overall conceptual design to consideration of detailed structural design issues.The performance of the novel BEJ design thus derived was then verified via theoretical analysis under different scenarios,full-scale model testing,and field testing and commissioning.Findings–Two major types of BEJs,deck-type and through-type,are used in HSR long-span bridges in China.Typical BEJ faults were found to mainly include skewness of steel sleepers at the bridge gap,abnormally large longitudinal frictional resistance,and flexural deformation of the scissor mechanisms.These faults influence BEJ functioning,and thus adversely affect track quality and train running performance at the beam end.Due to their simple and integral structure,deck-type BEJs with expansion range 1200 mm(±600 mm)or less have been favored as a solution offering improved operational conditions,and have emerged as a standard design.However,when the expansion range exceeds the above-mentioned value,special design work becomes necessary.Therefore,based on engineering practice,a performance-based integral design method for BEJs used with REJs was proposed,taking into account four major categories of performance requirements,i.e.,mechanical characteristics,train running quality,durability and insulation performance.Overall BEJ design must mainly consider component strength and the overall stiffness of BEJ;the latter factor in particular has a decisive influence on train running performance at the beam end.Detailed BEJ structural design must stress minimization of the frictional resistance of its sliding surface.The static and dynamic performance of the newlydesigned BEJ with expansion range 1600 mm have been confirmed to be satisfactory,via numerical simulation,full-scale model testing,and field testing and commissioning.Originality/value–This research provides a broad overview of the status of BEJs with large expansion range in HSR long-span bridges in China,along with novel insights into their design.展开更多
The restitution coefficient is an important elementary physical parameter related to the research and development of agricultural machinery.The kinematic model of maize seed in the falling and impacting processes was ...The restitution coefficient is an important elementary physical parameter related to the research and development of agricultural machinery.The kinematic model of maize seed in the falling and impacting processes was developed to measure the restitution coefficient between maize seed and soil.A test bench for measuring the restitution coefficient was designed and built referred to the theory of mirror reflection.The velocities for impacting maize seed were measured and analyzed in a three-dimensional space via high-speed photography,and then restitution coefficients of in different impact conditions were obtained.On this basis,this study took flat dent seed and round seed as samples.Single factor tests were conducted to analyze the influences of these factors on the restitution coefficient.The impact angle,falling height,soil compaction,soil moisture,maize moisture content and different parts of seed were selected as test factors.The corresponding regression equations were obtained by analysis.The results showed that,as the impact angle was bigger than 25°,the restitution coefficient increased with the increase of impact angle.The restitution coefficient had a linear decreasing trend with the increase of falling height.As the soil compaction strength was 200-350 kPa,the restitution coefficient increased with the increase of soil compaction.As the soil compaction strength was larger than 350 kPa,the changing trend of the restitution coefficient was relatively stable.As the soil moisture content was 13.5%-18%,the restitution coefficient decreased with the increase of soil moisture.As the soil moisture content was 18%,the restitution coefficient was the minimum.As the maize moisture content was 11%-16%,the restitution coefficient decreased with the increase of maize moisture content.The rotational motion always occurred in falling process of flat dent seed and round seed.The probabilities of crown part and lateral part of maize seed impacting with soil were the highest,and the restitution coefficient between crown part and soil was higher than that of other parts in the same condition.展开更多
To accurately determine the shedding frequency of the cavitation cloud in a submerged cavitation jet,the spectral analysis and the proper orthogonal decomposition(POD)for high-speed photography images are performed.Th...To accurately determine the shedding frequency of the cavitation cloud in a submerged cavitation jet,the spectral analysis and the proper orthogonal decomposition(POD)for high-speed photography images are performed.The spectrums of 6 different kinds of image signals(the area-averaged gray level,the line-averaged gray level,the point gray level,the cavitation length,width,and area)are calculated and compared.The line-averaged gray level is found to be optimal in determining the shedding frequency but an accurate frequency can only be obtained in the stable-frequency zone where the cavitation cloud sheds.In repeated experiments,the plateau-shape distribution of the main frequency is established with a deviation of 10.8%.A revised Reynolds number Re'is defined and the shedding frequency can be correlated to Re'by a power law when the cavitation number is less than 0.02.This relationship is validated by the experimental data in literature.The first mode of the POD characterizes the ensemble-average of the cavitation cloud while the second mode is the major part of the cavitation cloud transient components.The modes 2-5 are organized in pairs,which confirms the periodic feature of the cavitation cloud in the submerged cavitation jet.Near the nozzle exit,the modes 2-5 are symmetrically distributed in the jet shear layer.The shedding frequency of the cloud cavitation can also be precisely determined by performing the spectral analysis of the weighting coefficients of the mode 2.This paper shows that the two parameters,namely,the line-averaged gray level and the weighting coefficients of the mode 2,can be confidently used to calculate the shedding frequency of the cavitation cloud in a submerged cavitation jet.展开更多
Cutting is an essential and complicated process in many fields.Efficient and low-consumption cutting operations are of great significance for environmental protection and energy conservation.The development of high pe...Cutting is an essential and complicated process in many fields.Efficient and low-consumption cutting operations are of great significance for environmental protection and energy conservation.The development of high performance cutting parts relies on a deep understanding of the cutting process and cutting mechanism.In this research,a new type of cutting test bench with high-speed photography was developed,and the cutting tests were conducted on the jute fiber bundle from quasi-static cutting at 10 mm/s to dynamic cutting in the speed range of 0.6-2.4 m/s.The cutting process was captured by a high-speed camera.Analysis shows that compression exists before quasi-static cutting,and the compression force curve with respect to the compression ratio follows an exponential function.The cutting speed has a significant effect on cutting energy.The cutting energy consumption is not a monotonous function of cutting speed owing to the combined effect of elastic deformation and friction of fibers.The cutting energy increases with increasing cutting speed in the range of 0.6-1.2 m/s due to the increase of the friction within fibers and the friction between the blade and fibers.The cutting energy decreases with increasing cutting speed in the range of 1.2-1.8 m/s,and tends to be a fixed value when the cutting speed exceeds 1.8 m/s due to the stabilized elastic deformation and friction coefficient.From the perspective of energy saving,it is meaningless to increase the blade speed excessively when cutting fiber bundles.展开更多
Restitution coefficient(RC)of garlic bulb is an important mechanical property that is required to establish the kinematics model of bulb collision and research the damage mechanism of bulb collision.In this study,kine...Restitution coefficient(RC)of garlic bulb is an important mechanical property that is required to establish the kinematics model of bulb collision and research the damage mechanism of bulb collision.In this study,kinetic equations of bulb collision were established based on Hertz's contact theory.The kinematics characteristics,elastoplastic deformation and contact damage during bulb collision were analyzed by using high-speed photography.The effects of bulb mass,moisture content,collision material,material thickness and release height on the RC were investigated by mixed orthogonal experiments and single-factor experiments.The results showed that the movement of bulb in the compression stage was translation,and the movement in the rebound stage was translation and rotation.During collision,the larger the rotational angular velocity of the bulb was,the smaller the measured RC would be.The contact damage of bulb included internal damage of the tissue,epidermis stretch and tear.The significance of effects of factors on RC decreased with the following sequence:collision material,release height,material thickness,bulb mass,and moisture content.Collision material,release height,material thickness,and bulb mass were significant factors.The RC between the bulb and Q235,nylon,and rubber decreased sequentially.The RC decreased with the increase of release height and bulb mass.The RC increased with the increase of material thickness of Q235,while it decreased with the increase of material thickness of rubber or Nylon.The determination coefficients of the regression equations between the significant factors and the RC were all greater than 0.96.The results will be helpful for damage mechanism analysis and design of garlic production equipment.展开更多
Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the ef...Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the effects of orifice number and orifice layout on longitudinal velocity,turbulence intensity,and Reynolds stress,were measured with the particle image velocimetry(PIV)technique.Flow regimes of the cavitating flow were also observed with high-speed photography.The experimental results showed the following:(1)high-velocity multiple cavitating jets occurred behind the multi-orifice plates,and the cavitating flow fields were characterized by topological structures;(2)the longitudinal velocity at each cross-section exhibited a sawtooth-like distribution close to the multi-orifice plate,and each sawtooth indicated one jet issuing from one orifice;(3)there were similar magnitudes and forms for the longitudinal and vertical turbulence intensities at the same cross-section;(4)the variation in amplitude of Reynolds stress increased with an increase in orifice number;and(5)the cavitation clouds in the flow fields became denser with the increase in orifice number,and the clouds generated by the staggered layout of orifices were greater in number than those generated by the checkerboard-type one for the same orifice number.The experimental results can be used to analyze the mechanism of killing pathogenic microorganisms through hydrodynamic cavitation.展开更多
Shaped charge jet formation process is studied under the conditions of different background lights by means of high speed frame photography. In order to shoot true jet appearance, the glass tube in which jet moves is...Shaped charge jet formation process is studied under the conditions of different background lights by means of high speed frame photography. In order to shoot true jet appearance, the glass tube in which jet moves is vacuumized. The experiment results show that observing jet appearance with the double reflecting mirrors system is feasible as long as the vacuum of the glass tube can meet the requirement of experiment.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic...The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.展开更多
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
基金This work was supported by National Natural Science Foundation of China ( No. 50875088) Natural Science Foundation of Guangdong Province, China ( No. 07006479).
文摘In order to study how welding parameters affect welding quality and droplet transfer, a synchronous acquisition and analysis system is established to acquire and analyze electrical signal and instantaneous images of droplet transfer simultaneously, which is based on a self-developed soft-switching inverter. On the one hand, welding current and voltage signals are acquired and analyzed by a self-developed dynamic wavelet analyzer. On the other hand, images are filtered and optimized after they are captured by high-speed camera. The results show that instantaneous waveforms and statistical data of electrical signal contribute to make an overall assessment of welding quality, and that optimized high-speed images allow a visual and clear observation of droplet transfer process. The analysis of both waveforms and images leads to a further research on droplet transfer mechanism and provides a basis for precise control of droplet transfer.
基金Project(2023YFB2604304)supported by the National Key R&D Program of ChinaProjects(52122810,51978586,51778542,U23A20666,52472458)supported by the National Natural Science Foundation of China+1 种基金Project(K2022G034)supported by the Technology Research and Development Program of China National Railway Group Co.Ltd.Projects(2020JDJQ0033,2023NSFSC0884)supported by Sichuan Province Science and Technology Support Program,China。
文摘The influence of ramps on the transient rolling contact characteristics and damage mechanisms of switch rails remains unclear,presenting substantial challenges to the safety of railway operations.To this end,this paper constructs a transient rolling contact finite element model of the wheel-rail in switch under different ramps using ANSYS/LSDYNA method,and analyzes the tribology and damage characteristics when the wheel passes through the switch at a uniform speed.Our research findings reveal that the vibration induced in the switch rail during the wheel load transfer process leads to a step-like increase in the contact force.Moreover,the interaction between the wheel and the rail primarily involves slip contact,which may significantly contribute to the formation of corrugations on the switch rail.Additionally,the presence of large ramps exacerbates switch rail wear and rolling contact fatigue,resulting in a notable 13.2%increase in switch rail damage under 40‰ramp conditions compared to flat(0‰ramp)conditions.Furthermore,the large ramps can alter the direction of crack propagation,ultimately causing surface spalling of the rail.Therefore,large ramps intensify the dynamic interactions during the wheel load transfer process,further aggravating the crack and spalling damage to the switch rails.
基金support from the funds of National Natural Science Foundation of China(52308473)China Academy of Railway Science Corporation Limited(2022YJ192)are gratefully acknowledged。
文摘Purpose–High-speed turnouts are more complex in structure and thus may cause abnormal vibration of highspeed train car body,affecting driving safety and passenger riding experience.Therefore,it is necessary to analyze the data characteristics of continuous hunting of high-speed trains passing through turnouts and propose a diagnostic method for engineering applications.Design/methodology/approach–First,Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)is performed to determine the first characteristic component of the car body’s lateral acceleration.Then,the Short-Time Fourier Transform(STFT)is performed to calculate the marginal spectra.Finally,the presence of a continuous hunting problem is determined based on the results of the comparison calculations and diagnostic thresholds.To improve computational efficiency,permutation entropy(PE)is used as a fast indicator to identify turnouts with potential problems.Findings–Under continuous hunting conditions,the PE is less than 0.90;the ratio of the maximum peak value of the signal component to the original signal peak value exceeded 0.7,and there is an energy band in the STFT time-frequency map,which corresponds to a frequency distribution range of 1–2 Hz.Originality/value–The research results have revealed the lateral vibration characteristics of the high-speed train’s car body during continuous hunting when passing through turnouts.On this basis,an effective diagnostic method has been proposed.With a focus on practical engineering applications,a rapid screening index for identifying potential issues has been proposed,significantly enhancing the efficiency of diagnostic processes.
基金Project supported by the Haier GroupProject supported by the Eskisehir Osmangazi University,Türkiye。
文摘In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h),followed by tempering at two different temperatures(200,500℃).For performance testing,a ball-on-disk wear test setup was utilized and a total of 6 groups of samples were examined.The effects of cryo-treatment and tempering on microstructure were revealed through microstructural analysis with scanning electron microscopy(SEM),X-ray(XRD diffraction),and Rietveld analysis.Additionally,the hardness of the punches was measured with microhardness measurements.The optimal wear resistance was observed in the 36 h deep cryo-treated and 200℃tempered samples.The characterization study indicates that by cryogenic treatment a significant portion of the retained austenite transformed into martensite and secondary carbides formed,resulting in improved wear resistance and a slight increase in hardness.
基金sponsored by the National Natural Science Foundation of China(Grant No.52405443)the Technology Research and Development Plan of China Railway(Grant No.N2023G063)the Fund of China Academy of Railway Sciences Corporation Limited(Grant No.2023YJ054).
文摘Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated optimization strategy to reduce wheel–rail contact fatigue damage.Design/methodology/approach–Taking a small-radius curve of a high-speed railway as the research object,field measurements were conducted to obtain track parameters and wheel–rail profiles.A coupled vehicle-track dynamics model was established.Multiple numerical experiments were designed using the Latin Hypercube Sampling method to extract wheel-rail creepage indicators and construct a parameter-creepage response surface model.Findings–Key service parameters affecting wheel–rail creepage were identified,including the matching relationship between curve geometry and vehicle speed and rail profile parameters.The influence patterns of various parameters on wheel–rail creepage were revealed through response surface analysis,leading to the establishment of parameter optimization criteria.Originality/value–This study presents the systematic investigation of wheel–rail creepage characteristics under multi-parameter coupling in high-speed railway curves.A response surface-based parameter-creepage relationship model was established,and a multi-parameter coordinated optimization strategy was proposed.The research findings provide theoretical guidance for controlling wheel–rail contact fatigue damage and optimizing wheel–rail profiles in high-speed railway curves.
基金National Natural Science Foundation of China (No. U20A20275)Natural Science Foundation of Hunan Province,China (No. 2021JJ40096)。
文摘Based on the investigation of mechanical response and microstructure evolution of a commercial 7003 aluminum alloy under high-speed impact,a new simple and effective method was proposed to determine the critical strain required for the nucleation of adiabatic shear band(ASB).The deformation results of cylindrical and hat-shaped samples show that the critical strain required for ASB nucleation corresponds to the strain at the first local minimum after peak stress on the first derivative curve of true stress−true strain.The method of determining the critical strain for the nucleation of ASB through the first derivative of the flow stress curve is named the first derivative method.The proposed first derivative method is not only applicable to the 7003 aluminum alloy,but also to other metal materials,such as commercial purity titanium,WY-100 steel,and AM80 magnesium alloy.This proves that it has strong universality.
基金supported by National Natural Science Foundation of China(Nos.62161016,61661025)Gansu Provincial Science and Technology Plan(No.20JR10RA273)。
文摘In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision parameter multi-step prediction model is proposed to establish a two-hop relay communication system model between the high-speed train and the base station.Firstly,the switching algorithm uses convolution neural network(CNN)to extract the time sequence characteristics of decision parameters.Then,it learns the mapping relationship between feature information and decision parameters based on WaveNet and combining with rolling prediction method to realize multi-step prediction of decision parameters.Finally,dual-antenna communication mode is adopted to realize dual-link communication.The simulation results show that the proposed handover algorithm can improve handover trigger rate and handover success rate.
基金supported in part by National Natural Science Foundation of China under Grant 62461024Jiangxi Provincial Natural Science Foundation of China under Grant 20224ACB202001.
文摘In high-speed railway(HSR)wireless communication,the rapid channel changes and limited high-capacity access cause significant impact on the link performance.Meanwhile,the Doppler shift caused by high mobility leads to the inter-carrier interference.In this paper,we propose a reconfigurable intelligent surface(RIS)-assisted receive spatial modulation(SM)scheme based on the spatial-temporal correlated HSR Rician channel.The characteristics of SM and the phase shift adjustment of RIS are used to mitigate the performance degradation in high mobility scenarios.Considering the influence of channel spatial-temporal correlation and Doppler shift,the effects of different parameters on average bit error rate(BER)performance and upper bound of ergodic capacity are analyzed.Therefore,a joint antenna and RIS-unit selection algorithm based on the antenna removal method is proposed to increase the capacity performance of communication links.Numerical results show that the proposed RIS-assisted receive SM scheme can maintain high transmission capacity compared to the conventional HSR-SM scheme,whereas the degradation of BER performance can be compensated by arranging a large number of RIS-units.In addition,selecting more RIS-units has better capacity performance than activating more antennas in the low signal-to-noise ratio regions.
基金Key Basic Research Project of Strengthening the Foundations Plan of China (Grant No.2019-JCJQ-ZD-360-12)National Defense Basic Scientific Research Program of China (Grant No.JCKY2021208B011)to provide fund for conducting experiments。
文摘High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.
基金National Key R&D Program of China(2022YFB2602900)R&D Fund Project of China Academy of Railway Sciences Corporation Limited(2021YJ084)+2 种基金Project of Science and Technology R&D Program of China Railway(2016G002-K)R&D Fund Project of China Railway Major Bridge Reconnaissance&Design Institute Co.,Ltd.(2021)R&D Fund Project of China Railway Shanghai Group(2021141).
文摘Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the approach bridge.For long-span railway bridges,it must also be coordinated with rail expansion joint(REJ),which is necessary to accommodate the expansion and contraction of,and reducing longitudinal stress in,the rails.The main aim of this study is to present analysis of recent developments in the research and application of BEJs in high-speed railway(HSR)long-span bridges in China,and to propose a performance-based integral design method for BEJs used with REJs,from both theoretical and engineering perspectives.Design/methodology/approach–The study first presents a summary on the application and maintenance of BEJs in HSR long-span bridges in China representing an overview of their state of development.Results of a survey of typical BEJ faults were analyzed,and field testing was conducted on a railway cable-stayed bridge in order to obtain information on the major mechanical characteristics of its BEJ under train load.Based on the above,a performance-based integral design method for BEJs with maximum expansion range 1600 mm(±800 mm),was proposed,covering all stages from overall conceptual design to consideration of detailed structural design issues.The performance of the novel BEJ design thus derived was then verified via theoretical analysis under different scenarios,full-scale model testing,and field testing and commissioning.Findings–Two major types of BEJs,deck-type and through-type,are used in HSR long-span bridges in China.Typical BEJ faults were found to mainly include skewness of steel sleepers at the bridge gap,abnormally large longitudinal frictional resistance,and flexural deformation of the scissor mechanisms.These faults influence BEJ functioning,and thus adversely affect track quality and train running performance at the beam end.Due to their simple and integral structure,deck-type BEJs with expansion range 1200 mm(±600 mm)or less have been favored as a solution offering improved operational conditions,and have emerged as a standard design.However,when the expansion range exceeds the above-mentioned value,special design work becomes necessary.Therefore,based on engineering practice,a performance-based integral design method for BEJs used with REJs was proposed,taking into account four major categories of performance requirements,i.e.,mechanical characteristics,train running quality,durability and insulation performance.Overall BEJ design must mainly consider component strength and the overall stiffness of BEJ;the latter factor in particular has a decisive influence on train running performance at the beam end.Detailed BEJ structural design must stress minimization of the frictional resistance of its sliding surface.The static and dynamic performance of the newlydesigned BEJ with expansion range 1600 mm have been confirmed to be satisfactory,via numerical simulation,full-scale model testing,and field testing and commissioning.Originality/value–This research provides a broad overview of the status of BEJs with large expansion range in HSR long-span bridges in China,along with novel insights into their design.
基金the National Science and Technology Support Plan Project(2014BAD06B04).
文摘The restitution coefficient is an important elementary physical parameter related to the research and development of agricultural machinery.The kinematic model of maize seed in the falling and impacting processes was developed to measure the restitution coefficient between maize seed and soil.A test bench for measuring the restitution coefficient was designed and built referred to the theory of mirror reflection.The velocities for impacting maize seed were measured and analyzed in a three-dimensional space via high-speed photography,and then restitution coefficients of in different impact conditions were obtained.On this basis,this study took flat dent seed and round seed as samples.Single factor tests were conducted to analyze the influences of these factors on the restitution coefficient.The impact angle,falling height,soil compaction,soil moisture,maize moisture content and different parts of seed were selected as test factors.The corresponding regression equations were obtained by analysis.The results showed that,as the impact angle was bigger than 25°,the restitution coefficient increased with the increase of impact angle.The restitution coefficient had a linear decreasing trend with the increase of falling height.As the soil compaction strength was 200-350 kPa,the restitution coefficient increased with the increase of soil compaction.As the soil compaction strength was larger than 350 kPa,the changing trend of the restitution coefficient was relatively stable.As the soil moisture content was 13.5%-18%,the restitution coefficient decreased with the increase of soil moisture.As the soil moisture content was 18%,the restitution coefficient was the minimum.As the maize moisture content was 11%-16%,the restitution coefficient decreased with the increase of maize moisture content.The rotational motion always occurred in falling process of flat dent seed and round seed.The probabilities of crown part and lateral part of maize seed impacting with soil were the highest,and the restitution coefficient between crown part and soil was higher than that of other parts in the same condition.
基金supported by the National Natural Science Foundation of China(Grant No.41961144026)the Chinese Ministry of Science and Technology(Grant No.2016YFE0124600).
文摘To accurately determine the shedding frequency of the cavitation cloud in a submerged cavitation jet,the spectral analysis and the proper orthogonal decomposition(POD)for high-speed photography images are performed.The spectrums of 6 different kinds of image signals(the area-averaged gray level,the line-averaged gray level,the point gray level,the cavitation length,width,and area)are calculated and compared.The line-averaged gray level is found to be optimal in determining the shedding frequency but an accurate frequency can only be obtained in the stable-frequency zone where the cavitation cloud sheds.In repeated experiments,the plateau-shape distribution of the main frequency is established with a deviation of 10.8%.A revised Reynolds number Re'is defined and the shedding frequency can be correlated to Re'by a power law when the cavitation number is less than 0.02.This relationship is validated by the experimental data in literature.The first mode of the POD characterizes the ensemble-average of the cavitation cloud while the second mode is the major part of the cavitation cloud transient components.The modes 2-5 are organized in pairs,which confirms the periodic feature of the cavitation cloud in the submerged cavitation jet.Near the nozzle exit,the modes 2-5 are symmetrically distributed in the jet shear layer.The shedding frequency of the cloud cavitation can also be precisely determined by performing the spectral analysis of the weighting coefficients of the mode 2.This paper shows that the two parameters,namely,the line-averaged gray level and the weighting coefficients of the mode 2,can be confidently used to calculate the shedding frequency of the cavitation cloud in a submerged cavitation jet.
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2017YFD0700502)and the National Natural Science Foundation of China(Grant No.51705136 and 51375146).
文摘Cutting is an essential and complicated process in many fields.Efficient and low-consumption cutting operations are of great significance for environmental protection and energy conservation.The development of high performance cutting parts relies on a deep understanding of the cutting process and cutting mechanism.In this research,a new type of cutting test bench with high-speed photography was developed,and the cutting tests were conducted on the jute fiber bundle from quasi-static cutting at 10 mm/s to dynamic cutting in the speed range of 0.6-2.4 m/s.The cutting process was captured by a high-speed camera.Analysis shows that compression exists before quasi-static cutting,and the compression force curve with respect to the compression ratio follows an exponential function.The cutting speed has a significant effect on cutting energy.The cutting energy consumption is not a monotonous function of cutting speed owing to the combined effect of elastic deformation and friction of fibers.The cutting energy increases with increasing cutting speed in the range of 0.6-1.2 m/s due to the increase of the friction within fibers and the friction between the blade and fibers.The cutting energy decreases with increasing cutting speed in the range of 1.2-1.8 m/s,and tends to be a fixed value when the cutting speed exceeds 1.8 m/s due to the stabilized elastic deformation and friction coefficient.From the perspective of energy saving,it is meaningless to increase the blade speed excessively when cutting fiber bundles.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51805282)Funds for Central Universities,China(XDJK2018AC001)National Key R&D Program of China(2017YFD0701305-02).
文摘Restitution coefficient(RC)of garlic bulb is an important mechanical property that is required to establish the kinematics model of bulb collision and research the damage mechanism of bulb collision.In this study,kinetic equations of bulb collision were established based on Hertz's contact theory.The kinematics characteristics,elastoplastic deformation and contact damage during bulb collision were analyzed by using high-speed photography.The effects of bulb mass,moisture content,collision material,material thickness and release height on the RC were investigated by mixed orthogonal experiments and single-factor experiments.The results showed that the movement of bulb in the compression stage was translation,and the movement in the rebound stage was translation and rotation.During collision,the larger the rotational angular velocity of the bulb was,the smaller the measured RC would be.The contact damage of bulb included internal damage of the tissue,epidermis stretch and tear.The significance of effects of factors on RC decreased with the following sequence:collision material,release height,material thickness,bulb mass,and moisture content.Collision material,release height,material thickness,and bulb mass were significant factors.The RC between the bulb and Q235,nylon,and rubber decreased sequentially.The RC decreased with the increase of release height and bulb mass.The RC increased with the increase of material thickness of Q235,while it decreased with the increase of material thickness of rubber or Nylon.The determination coefficients of the regression equations between the significant factors and the RC were all greater than 0.96.The results will be helpful for damage mechanism analysis and design of garlic production equipment.
基金supported by the National Natural Science Foundation of China(Grant No.51479177).
文摘Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the effects of orifice number and orifice layout on longitudinal velocity,turbulence intensity,and Reynolds stress,were measured with the particle image velocimetry(PIV)technique.Flow regimes of the cavitating flow were also observed with high-speed photography.The experimental results showed the following:(1)high-velocity multiple cavitating jets occurred behind the multi-orifice plates,and the cavitating flow fields were characterized by topological structures;(2)the longitudinal velocity at each cross-section exhibited a sawtooth-like distribution close to the multi-orifice plate,and each sawtooth indicated one jet issuing from one orifice;(3)there were similar magnitudes and forms for the longitudinal and vertical turbulence intensities at the same cross-section;(4)the variation in amplitude of Reynolds stress increased with an increase in orifice number;and(5)the cavitation clouds in the flow fields became denser with the increase in orifice number,and the clouds generated by the staggered layout of orifices were greater in number than those generated by the checkerboard-type one for the same orifice number.The experimental results can be used to analyze the mechanism of killing pathogenic microorganisms through hydrodynamic cavitation.
文摘Shaped charge jet formation process is studied under the conditions of different background lights by means of high speed frame photography. In order to shoot true jet appearance, the glass tube in which jet moves is vacuumized. The experiment results show that observing jet appearance with the double reflecting mirrors system is feasible as long as the vacuum of the glass tube can meet the requirement of experiment.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18).
文摘The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.