Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signal...Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signaling system.Design/methodology/approach–Firstly,a single-train trajectory optimization(STTO)model is constructed based on train dynamics and operating conditions.The train kinematics parameters,including acceleration,speed and time at each position,are calculated to predict the arrival times in the train timetable.A STTO algorithm is developed to optimize a single-train time-efficient driving strategy.Then,a TTR approach based on multi-train tracking optimization(TTR-MTTO)is proposed with mutual information.The constraints of temporary speed restriction(TSR)and end of authority are decoupled to calculate the tracking trajectory of the backward tracking train.The multi-train trajectories at each position are optimized to generate a timeefficient train timetable.Findings–The numerical experiment is performed on the Beijing-Tianjin high-speed railway line and CR400AF.The STTO algorithm predicts the train’s planned arrival time to calculate the total train delay(TTD).As for the TSR scenario,the proposed TTR-MTTO can reduce TTD by 60.60%compared with the traditional TTR approach with dispatchers’experience.Moreover,TTR-MTTO can optimize a time-efficient train timetable to help dispatchers reschedule trains more reasonably.Originality/value–With the cooperative relationship and mutual information between train rescheduling and control,the proposed TTR-MTTO approach can automatically generate a time-efficient train timetable to reduce the total train delay and the work intensity of dispatchers.展开更多
Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under...Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder.展开更多
High-speed railways have the merits of high speed, high transport capacity, low consumption of energy, less pollution, less occupation of land, and greater safety. The development of high-speed railways is suitable fo...High-speed railways have the merits of high speed, high transport capacity, low consumption of energy, less pollution, less occupation of land, and greater safety. The development of high-speed railways is suitable for the national conditions in China.The authors suggest that, with the Hu-Ning (Shanghai-Nanjing) section of the Jing-Hu (Beijing-Shanghai) Railway as the starting point, a high-speed dedicated passenger railway line be built to realize the separate transportation of passengers and goods, thus easing the strain on transport in East China, accumulating experience for the future development of high-speed railways, and bringing along the development of high and new technology industries.展开更多
As the unique power entrance,the pantograph-catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train.Along with the fast development of high-speed rail...As the unique power entrance,the pantograph-catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train.Along with the fast development of high-speed railways all over the world,some commercialized lines are built for covering the remote places under harsh environment,especially in China;these environmental elements including wind,sand,rain,thunder,ice and snow need to be considered during the design of the pantograph-catenary system.The pantograph-catenary system includes the pantograph,the contact wire and the interface—pantograph slide.As the key component,this pantograph slide plays a critical role in reliable power transmission under dynamic condition.The fundamental material characteristics of the pantograph slide and contact wire such as electrical conductivity,impact resistance,wear resistance,etc.,directly determine the sliding electrical contact performance of the pantograph-catenary system;meanwhile,different detection methods of the pantograph-catenary system are crucial for the reliability of service and maintenance.In addition,the challenges brought from extreme operational conditions are discussed,taking the Sichuan-Tibet Railway currently under construction as a special example with the high-altitude climate.The outlook for developing the ultra-high-speed train equipped with the novel pantograph-catenary system which can address the harsher operational environment is also involved.This paper has provided a comprehensive review of the high-speed railway pantograph-catenary systems,including its progress,challenges,outlooks in the history and future.展开更多
Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway...Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper,and its main functions for investigating the mechanical performance of track–subgrade systems are elaborated with three typical experimental examples.Comprising the full-scale subgrade structure and all the five types of track structures adopted in Chinese high-speed railways,namely the CRTS I,the CRTS II and the CRTS III ballastless tracks,the double-block ballastless track and the ballasted track,the test platform is established strictly according to the construction standard of Chinese high-speed railways.Three kinds of effective loading methods are employed,including the real bogie loading,multi-point loading and the impact loading.Various types of sensors are adopted in different components of the five types of track–subgrade systems to measure the displacement,acceleration,pressure,structural strain and deformation,etc.Utilizing this test platform,both dynamic characteristics and long-term performance evolution of high-speed railway track–subgrade systems can be investigated,being able to satisfy the actual demand for large-scale operation of Chinese high-speed railways.As examples,three typical experimental studies are presented to elucidate the comprehensive functionalities of the full-scale multi-functional test platform for exploring the dynamic performance and its long-term evolution of ballastless track systems and for studying the long-term accumulative settlement of the ballasted track–subgrade system in high-speed railways.Some interesting phenomena and meaningful results are captured by the developed test platform,which provide a useful guidance for the scientific operation and maintenance of high-speed railway infrastructure.展开更多
In order to analyze the characteristics of wheel-rail vibration of the vertical section in a high-speed railway, a vehicle-line dynamics model is established using the dynamics software SIMPACK. Through this model, th...In order to analyze the characteristics of wheel-rail vibration of the vertical section in a high-speed railway, a vehicle-line dynamics model is established using the dynamics software SIMPACK. Through this model, the paper analyzes the influence of vertical section parameters, including vertical section slope and vertical curve radius, on wheel-rail dynamics interaction and the acting region of wheel-rail vibration. In addition, the characteristics of wheel- rail vibration of the vertical section under different velocities are investigated. The results show that the variation of wheel load is not sensitive to the vertical section slope but is greatly affected by the vertical curve radius. It was also observed that the smaller the vertical curve radius is, the more severe the interaction between the wheel and rail be- comes. Furthermore, the acting region of wheel-rail vibration expands with the vertical curve radius increasing. On another note, it is necessary to match the slope and vertical curve radius reasonably, on account of the influence of operation speed on the characteristics of wheel-rail vibration. This is especially important at the design stage of vertical sec- tions for lines of different grades.展开更多
Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-sup...Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively.展开更多
On-line rail milling technologies have been applied in rail maintenance, and are proving to be efficient and environmental friendly. Based on the field data of on-line rail milling, a program for comparing rail transv...On-line rail milling technologies have been applied in rail maintenance, and are proving to be efficient and environmental friendly. Based on the field data of on-line rail milling, a program for comparing rail transverse profiles before and after milling was designed and the root mean square (RMS) amplitude of longitudinal profile was calculated. The application of on-line rail milling technology in removing rail surface defects, re-profiling railhead transverse profiles, smoothing longitudinal profiles and improving welding joint irregularity were analyzed. The results showed that the on-line rail milling technology can remove the surface defects at the rail crown and gauge comer perfectly, re-profile railhead transverse profile with a tolerance of - 1. 0-0.2 ram, improve longitudinal irregularity of rail surface, with the RMS amplitude of irregularity reduced more than 50% and the number of out-of- limited amplitude reduced by 42% - 82% in all wavelength ranges. The improvement of welding joint irregularity depends on the amount of metal removal determined by the milling equipment and the primal amplitude.展开更多
In recent years,with the rapid development of high-speed railways(HSRs),power interruptions or disturbances in traction power supply systems have become increasingly dangerous.However,it is often impossible to detect ...In recent years,with the rapid development of high-speed railways(HSRs),power interruptions or disturbances in traction power supply systems have become increasingly dangerous.However,it is often impossible to detect these faults immediately through single-point monitoring or collecting data after accidents.To coordinate the power quality data of both traction power supply systems(TPSSs)and high-speed trains(HSTs),a monitoring and assessing system is proposed to access the power quality issues on HSRs.By integrating train monitoring,traction substation monitoring and data center,this monitoring system not only realizes the real-time monitoring of operational behaviors for both TPSSs and HSTs,but also conducts a comprehensive assessment of operational quality for train-network systems.Based on a large number of monitoring data,the field measurements show that this real-time monitoring system is effective for monitoring and evaluating a traction-network system.展开更多
Departing from the present situation, this paper attempts to highlight future prospects of high-speed railways. A panorama of high-speed lines worldwide is first given and the limits of a further increase of rail spee...Departing from the present situation, this paper attempts to highlight future prospects of high-speed railways. A panorama of high-speed lines worldwide is first given and the limits of a further increase of rail speeds are surveyed. It is explained that rail high speeds are feasible only for large population concentrations. The impact of high speeds on the reduction of travel times is studied. It is established a causal relationship between rail share and reduced travel times. Diversities concerning technical characteristics from one system to another are emphasized together with differences in construction costs from one case to another.展开更多
Rail corrugation poses a significant threat to train running safety in the field of railway engineering.Therefore,this study employs numerical analysis to investigate the evolution and formation mechanism of rail corr...Rail corrugation poses a significant threat to train running safety in the field of railway engineering.Therefore,this study employs numerical analysis to investigate the evolution and formation mechanism of rail corrugation in high-speed railways(HSR).Firstly,a three-dimensional(3D)vehicle-track coupled dynamics(VTCD)model is established,which considers the longitudinal wheel-rail(WR)coupling relationship more adequately.Then,by integrating the USFD wear model into this 3D VTCD model,a long-term iterative wear model is developed to reproduce the corrugation evolution process.The predicted corrugation exhibits two distinct wavelength components and closely matches the sample obtained from China's HSR,validating the established model in terms of reliability.Furthermore,the formation mechanism of these two wavelength components is investigated by analyzing the harmonic behavior of vehicle-track coupled systems(VTCS)and the evolution law of rail corrugation under different calculation conditions.The findings reveal that the 3rd-order vertical rail local bending mode(RLBM)between two wheelsets of a bogie(TW-B)is the primary factor contributing to the formation of the long-wavelength component of rail corrugation.The discrete supports of the fasteners do not affect the 3rd-order vertical RLBM,which can be stably excited.Moreover,the vertical rail vibration has a substantial coupled effect on the longitudinal WR creep.When the 3rd-order vertical RLBM is excited,the coupled effect and the negative longitudinal WR creepage together evidently promote the formation of the short-wavelength component of rail corrugation.展开更多
High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(H...High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies.展开更多
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
Considering the application of wind-forecasting technology along the railway,it becomes an effective means to reduce the risk of tain more reliable wind-speed prediction results,this study proposes an intelligent ense...Considering the application of wind-forecasting technology along the railway,it becomes an effective means to reduce the risk of tain more reliable wind-speed prediction results,this study proposes an intelligent ensemble forecasting method for strong winds train derailment and overturning.Accurate prediction of crosswinds can provide scientific guidance for safe train operation.To obalong the high-speed railway.The method consists of three parts:the data preprocessing module,the hybrid prediction module and original wind speed data.Then,Broyden-Fletcher-Goldfarb-Shanno(BFGS)method,non-linear autoregressive network with exoge-the reinforcement learing ensemble module.First,fast ensemble empirical model decomposition(FEEMD)is used to process the prediction models for all the sublayers of decomposition.Finally,Q-learning is utilized to iteratively calculate the combined weights nous inputs(NARX)and deep belief network(DBN),three benchmark predictors with different characteristics are employed to build of the three models,and the prediction results of each sublayer are superimposed to obtain the model output.The real wind speed data of two railway stations in Xinjiang are used for experimental comparison.Experiments show that compared with the single benchmark model,the hybrid ensemble model has better accumacy and robustness for wind speed prediction along the railway.The 1-step forecasting results mean absolute error(MAE),mean absolute percentage error(MAPE)and root mean square error(RMSE)of Q-leaming-FEEMD-BFGS-NARX-DBN in site #1 and site #2 are 0.0894 m/s,0.6509%,0.1146 m/s,and 0.0458 m/s.0.2709%,0.0616 m/s.respectively.The proposed ensemble model is a promising method for railway wind speed prediction.展开更多
The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this ...The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this type have been widely used for rapidly constructing the high-speed railway network,but few bridges have been tested by near-fault devastating earthquakes.The potential severe impact of the earthquake on the high-speed railway is not only the safety of the infrastructure,trains and passengers,but also economic loss due to interrupted railway use.Therefore,a field survey was carried out immediately after the earthquake to collect time-sensitive data.The damage to the bridge was carefully investigated,and quantitative analyses were conducted to better understand the mechanism of the bridge failure.It was found that seismic action perpendicular to the bridge’s longitudinal direction caused severe damage to the girders and rails,while none of the piers showed obvious deformation or cracking.The maximum values of transverse displacement,out-of-plane rotation and twisting angle of girders reached 212.6 cm,3.1 degrees and 19.9 degrees,respectively,causing severe damage to the bearing supports and anti-seismic retaining blocks.These observations provide a basis for improving the seismic design of high-speed railway bridges located in near-fault areas.展开更多
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper...Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.展开更多
The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can...The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.展开更多
Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportation...Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportationinterruptions, delays and even threaten the safety of train operations. Exploring the impact of disturbances onsignaling equipment and establishing evaluation methods for the correlation between EMI and safety isurgently needed.Design/methodology/approach – This paper elaborates on the necessity and significance of studying theimpact of EMI as an unavoidable and widespread risk factor in the external environment of high-speed railwayoperations and continuous development. The current status of research methods and achievements from theperspectives of standard systems, reliability analysis and safety assessment are examined layer by layer.Additionally, it provides prospects for innovative ideas for exploring the quantitative correlation between EMIand signaling safety.Findings – Despite certain innovative achievements in both domestic and international standard systems andrelated research for ensuring and evaluating railway signaling safety, there’s a lack of quantitative and strategic research on the degradation of safety performance in signaling equipment due to EMI. A quantitativecorrelation between EMI and safety has yet to be established. On this basis, this paper proposes considerationsfor research methods pertaining to the correlation between EMI and safety.Originality/value – This paper overviews a series of methods and outcomes derived from domestic andinternational studies regarding railway signaling safety, encompassing standard systems, reliability analysisand safety assessment. Recognizing the necessity for quantitatively describing and predicting the impact ofEMI on high-speed railway signaling safety, an innovative approach using risk assessment techniques as abridge to establish the correlation between EMI and signaling safety is proposed.展开更多
Purpose–Safety management is a key point and poses a challenge in joint testing.To detect and address potential accidents’hidden dangers early,this paper conducts research on the safety control technology for high-s...Purpose–Safety management is a key point and poses a challenge in joint testing.To detect and address potential accidents’hidden dangers early,this paper conducts research on the safety control technology for high-speed railway joint tests by incorporating the concept of hazardous events.Design/methodology/approach–Aiming at ensuring the safety of high-speed railway combined inspections and trials,this paper starts from the dual prevention mechanism.It introduces the concept of threatening events,defines them and analyzes the differences between threatening events and railway accidents.The paper also proposes a cause model for threatening events in high-speed railway combined inspections and trials,based on three types of hazard sources.Furthermore,it conducts research on the control strategies for these threatening events.Findings–The research on safety control technology for high-speed railway combined operation and testing,based on the analysis of threatened events,offers a new perspective for safety management in these operations.It also provides theoretical and practical support for the transition from passive prevention to active risk pre-control,which holds significant theoretical and practical value.Originality/value–The innovation mainly includes the following three aspects:(1)Building on the traditional dual prevention mechanism,which includes risk hierarchical management and control as well as hidden danger investigation and management,a triple prevention mechanism is proposed.This new mechanism adds the management of threatening events as the third line of defense.The aim is to more comprehensively identify and address potential security risks,thereby enhancing the efficiency and effectiveness of security management.(2)In this paper,the definition of a railway threatening event is clarified,and the causative model of a high-speed railway threatening event based on three kinds of danger sources is proposed.(3)This paper puts forward the control strategy of the high-speed railway combined operation and trial,which includes five key links:identification,reporting,analysis,rectification and feedback,which provides a new perspective for the safety management of the high-speed railway combined operation and trial and has important theoretical and application value.展开更多
Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable c...Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable centralized traffic control(CTC)system risk assessment method.Design/methodologylapproach-First,system-theoretic process analysis(STPA)is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis.Then,to enhance the accuracy of weight calculation,the fuzzy analytical hierarchy process(FAHP),fuzzy decision-making trial and evaluation laboratory(FDEMATEL)and entropy weight method are employed to calculate the subjective weight,relative weight and objective weight of each index.These three types of weights are combined using game theory to obtain the combined weight for each index.To reduce subjectivity and uncertainty in the assessment process,the backward cloud generator method is utilized to obtain the numerical character(NC)of the cloud model for each index.The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system.This cloud model is used to obtain the CTC system's comprehensive risk assessment.The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud.Finally,this process yields the risk assessment results for the CTC system.Findings-The cloud model can handle the subjectivity and fuzziness in the risk assessment process well.The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.Originality/value-This study provides a cloud model-based method for risk assessment of CTC systems,which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment,achieving effective risk assessment of CTC systems.It can provide a reference and theoretical basis for risk management of the CTC system.展开更多
基金This research was jointly supported by the National Natural Science Foundation of China[Grant 62203468]the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)[Grant 2022QNRC001]+1 种基金the Technological Research and Development Program of China Railway Corporation Limited[Grant K2021X001]by the Foundation of China Academy of Railway Sciences Corporation Limited[Grant 2021YJ043].On behalf all authors,the corresponding author states that there is no conflict of interest.
文摘Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signaling system.Design/methodology/approach–Firstly,a single-train trajectory optimization(STTO)model is constructed based on train dynamics and operating conditions.The train kinematics parameters,including acceleration,speed and time at each position,are calculated to predict the arrival times in the train timetable.A STTO algorithm is developed to optimize a single-train time-efficient driving strategy.Then,a TTR approach based on multi-train tracking optimization(TTR-MTTO)is proposed with mutual information.The constraints of temporary speed restriction(TSR)and end of authority are decoupled to calculate the tracking trajectory of the backward tracking train.The multi-train trajectories at each position are optimized to generate a timeefficient train timetable.Findings–The numerical experiment is performed on the Beijing-Tianjin high-speed railway line and CR400AF.The STTO algorithm predicts the train’s planned arrival time to calculate the total train delay(TTD).As for the TSR scenario,the proposed TTR-MTTO can reduce TTD by 60.60%compared with the traditional TTR approach with dispatchers’experience.Moreover,TTR-MTTO can optimize a time-efficient train timetable to help dispatchers reschedule trains more reasonably.Originality/value–With the cooperative relationship and mutual information between train rescheduling and control,the proposed TTR-MTTO approach can automatically generate a time-efficient train timetable to reduce the total train delay and the work intensity of dispatchers.
基金National Natural Science Foundation of China under Grant Nos.51622803,51378177 and 51420105013the 111 Project under Grant No.B13024
文摘Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder.
文摘High-speed railways have the merits of high speed, high transport capacity, low consumption of energy, less pollution, less occupation of land, and greater safety. The development of high-speed railways is suitable for the national conditions in China.The authors suggest that, with the Hu-Ning (Shanghai-Nanjing) section of the Jing-Hu (Beijing-Shanghai) Railway as the starting point, a high-speed dedicated passenger railway line be built to realize the separate transportation of passengers and goods, thus easing the strain on transport in East China, accumulating experience for the future development of high-speed railways, and bringing along the development of high and new technology industries.
基金supported by the National Natural Science Foundation of China(Nos.U19A20105,51837009,51807167,51922090,U1966602 and 52077182)the Scientific and Technological Funds for Young Scientists of Sichuan(No.2019JDJQ0019)。
文摘As the unique power entrance,the pantograph-catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train.Along with the fast development of high-speed railways all over the world,some commercialized lines are built for covering the remote places under harsh environment,especially in China;these environmental elements including wind,sand,rain,thunder,ice and snow need to be considered during the design of the pantograph-catenary system.The pantograph-catenary system includes the pantograph,the contact wire and the interface—pantograph slide.As the key component,this pantograph slide plays a critical role in reliable power transmission under dynamic condition.The fundamental material characteristics of the pantograph slide and contact wire such as electrical conductivity,impact resistance,wear resistance,etc.,directly determine the sliding electrical contact performance of the pantograph-catenary system;meanwhile,different detection methods of the pantograph-catenary system are crucial for the reliability of service and maintenance.In addition,the challenges brought from extreme operational conditions are discussed,taking the Sichuan-Tibet Railway currently under construction as a special example with the high-altitude climate.The outlook for developing the ultra-high-speed train equipped with the novel pantograph-catenary system which can address the harsher operational environment is also involved.This paper has provided a comprehensive review of the high-speed railway pantograph-catenary systems,including its progress,challenges,outlooks in the history and future.
基金This work was supported by the National Natural Science Foundation of China[Grant Nos.11790283,51978587,51708457]the Program of Introducing Talents of Discipline to Universities(111 Project)[Grant No.B16041].
文摘Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper,and its main functions for investigating the mechanical performance of track–subgrade systems are elaborated with three typical experimental examples.Comprising the full-scale subgrade structure and all the five types of track structures adopted in Chinese high-speed railways,namely the CRTS I,the CRTS II and the CRTS III ballastless tracks,the double-block ballastless track and the ballasted track,the test platform is established strictly according to the construction standard of Chinese high-speed railways.Three kinds of effective loading methods are employed,including the real bogie loading,multi-point loading and the impact loading.Various types of sensors are adopted in different components of the five types of track–subgrade systems to measure the displacement,acceleration,pressure,structural strain and deformation,etc.Utilizing this test platform,both dynamic characteristics and long-term performance evolution of high-speed railway track–subgrade systems can be investigated,being able to satisfy the actual demand for large-scale operation of Chinese high-speed railways.As examples,three typical experimental studies are presented to elucidate the comprehensive functionalities of the full-scale multi-functional test platform for exploring the dynamic performance and its long-term evolution of ballastless track systems and for studying the long-term accumulative settlement of the ballasted track–subgrade system in high-speed railways.Some interesting phenomena and meaningful results are captured by the developed test platform,which provide a useful guidance for the scientific operation and maintenance of high-speed railway infrastructure.
基金support and motivation provided by the National Natural Science Foundation of China (No. 51075340)the Fok YingTong Education Foundation for Young Teachers in the Higher Education Institutions of China (No. 121075)the Program for Innovation Research Team in University in China (No. IRT1178)
文摘In order to analyze the characteristics of wheel-rail vibration of the vertical section in a high-speed railway, a vehicle-line dynamics model is established using the dynamics software SIMPACK. Through this model, the paper analyzes the influence of vertical section parameters, including vertical section slope and vertical curve radius, on wheel-rail dynamics interaction and the acting region of wheel-rail vibration. In addition, the characteristics of wheel- rail vibration of the vertical section under different velocities are investigated. The results show that the variation of wheel load is not sensitive to the vertical section slope but is greatly affected by the vertical curve radius. It was also observed that the smaller the vertical curve radius is, the more severe the interaction between the wheel and rail be- comes. Furthermore, the acting region of wheel-rail vibration expands with the vertical curve radius increasing. On another note, it is necessary to match the slope and vertical curve radius reasonably, on account of the influence of operation speed on the characteristics of wheel-rail vibration. This is especially important at the design stage of vertical sec- tions for lines of different grades.
基金Project(51378050) supported by the National Natural Science Foundation of ChinaProject(B13002) supported by the “111” Project,China+2 种基金Project (8192035) supported by the Beijing Municipal Natural Science Foundation,ChinaProject(P2019G002) supported by the Science and Technology Research and Development Program of China RailwayProject(2019YJ193) supported by the State Key Laboratory for Track Technology of High-speed Railway,China。
文摘Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively.
基金The National Natural Science Foundation of China(No.50908179)Specialized Research Fund for the Doctoral Program of Higher Education(No.200802471003)Program for Young Excellent Talents in Tongji University(No.2008KJ026)
文摘On-line rail milling technologies have been applied in rail maintenance, and are proving to be efficient and environmental friendly. Based on the field data of on-line rail milling, a program for comparing rail transverse profiles before and after milling was designed and the root mean square (RMS) amplitude of longitudinal profile was calculated. The application of on-line rail milling technology in removing rail surface defects, re-profiling railhead transverse profiles, smoothing longitudinal profiles and improving welding joint irregularity were analyzed. The results showed that the on-line rail milling technology can remove the surface defects at the rail crown and gauge comer perfectly, re-profile railhead transverse profile with a tolerance of - 1. 0-0.2 ram, improve longitudinal irregularity of rail surface, with the RMS amplitude of irregularity reduced more than 50% and the number of out-of- limited amplitude reduced by 42% - 82% in all wavelength ranges. The improvement of welding joint irregularity depends on the amount of metal removal determined by the milling equipment and the primal amplitude.
文摘In recent years,with the rapid development of high-speed railways(HSRs),power interruptions or disturbances in traction power supply systems have become increasingly dangerous.However,it is often impossible to detect these faults immediately through single-point monitoring or collecting data after accidents.To coordinate the power quality data of both traction power supply systems(TPSSs)and high-speed trains(HSTs),a monitoring and assessing system is proposed to access the power quality issues on HSRs.By integrating train monitoring,traction substation monitoring and data center,this monitoring system not only realizes the real-time monitoring of operational behaviors for both TPSSs and HSTs,but also conducts a comprehensive assessment of operational quality for train-network systems.Based on a large number of monitoring data,the field measurements show that this real-time monitoring system is effective for monitoring and evaluating a traction-network system.
文摘Departing from the present situation, this paper attempts to highlight future prospects of high-speed railways. A panorama of high-speed lines worldwide is first given and the limits of a further increase of rail speeds are surveyed. It is explained that rail high speeds are feasible only for large population concentrations. The impact of high speeds on the reduction of travel times is studied. It is established a causal relationship between rail share and reduced travel times. Diversities concerning technical characteristics from one system to another are emphasized together with differences in construction costs from one case to another.
基金supported by the National Natural Science Foundation of China(Grant Nos.52222217 and 52388102)the National Key R&D Program of China(Grant No.2023YFB2604301)the Fund from State Key Laboratory of Rail Transit Vehicle System(Grant No.2023TPL-T02)。
文摘Rail corrugation poses a significant threat to train running safety in the field of railway engineering.Therefore,this study employs numerical analysis to investigate the evolution and formation mechanism of rail corrugation in high-speed railways(HSR).Firstly,a three-dimensional(3D)vehicle-track coupled dynamics(VTCD)model is established,which considers the longitudinal wheel-rail(WR)coupling relationship more adequately.Then,by integrating the USFD wear model into this 3D VTCD model,a long-term iterative wear model is developed to reproduce the corrugation evolution process.The predicted corrugation exhibits two distinct wavelength components and closely matches the sample obtained from China's HSR,validating the established model in terms of reliability.Furthermore,the formation mechanism of these two wavelength components is investigated by analyzing the harmonic behavior of vehicle-track coupled systems(VTCS)and the evolution law of rail corrugation under different calculation conditions.The findings reveal that the 3rd-order vertical rail local bending mode(RLBM)between two wheelsets of a bogie(TW-B)is the primary factor contributing to the formation of the long-wavelength component of rail corrugation.The discrete supports of the fasteners do not affect the 3rd-order vertical RLBM,which can be stably excited.Moreover,the vertical rail vibration has a substantial coupled effect on the longitudinal WR creep.When the 3rd-order vertical RLBM is excited,the coupled effect and the negative longitudinal WR creepage together evidently promote the formation of the short-wavelength component of rail corrugation.
基金This work was financially supported by the Portuguese Foundation for Science and Technology(FCT)through the PhD scholarship PD/BD/143007/2018The authors would like also to acknowledge the financial support of the projects IN2TRACK2-Research into enhanced track and switch and crossing system 2 and IN2TRACK3-Research into optimised and future railway infrastructure funded by European funds through the H2020(SHIFT2RAIL Innovation Programme)and of the Base Funding-UIDB/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC).
文摘High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies.
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
基金supported by the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd.(Grant No.N2021T007)the National Natural Science Foundation of China(Grant No.61873283)the Changsha Science&Technology Project(Grant No.KQ1707017).
文摘Considering the application of wind-forecasting technology along the railway,it becomes an effective means to reduce the risk of tain more reliable wind-speed prediction results,this study proposes an intelligent ensemble forecasting method for strong winds train derailment and overturning.Accurate prediction of crosswinds can provide scientific guidance for safe train operation.To obalong the high-speed railway.The method consists of three parts:the data preprocessing module,the hybrid prediction module and original wind speed data.Then,Broyden-Fletcher-Goldfarb-Shanno(BFGS)method,non-linear autoregressive network with exoge-the reinforcement learing ensemble module.First,fast ensemble empirical model decomposition(FEEMD)is used to process the prediction models for all the sublayers of decomposition.Finally,Q-learning is utilized to iteratively calculate the combined weights nous inputs(NARX)and deep belief network(DBN),three benchmark predictors with different characteristics are employed to build of the three models,and the prediction results of each sublayer are superimposed to obtain the model output.The real wind speed data of two railway stations in Xinjiang are used for experimental comparison.Experiments show that compared with the single benchmark model,the hybrid ensemble model has better accumacy and robustness for wind speed prediction along the railway.The 1-step forecasting results mean absolute error(MAE),mean absolute percentage error(MAPE)and root mean square error(RMSE)of Q-leaming-FEEMD-BFGS-NARX-DBN in site #1 and site #2 are 0.0894 m/s,0.6509%,0.1146 m/s,and 0.0458 m/s.0.2709%,0.0616 m/s.respectively.The proposed ensemble model is a promising method for railway wind speed prediction.
基金Scientific Research Funding of IEM under Grant No.2021EEEVL0211Natural Science Foundation of Heilongjiang Province under Grant No.JQ2021E006National Natural Science Foundation of China under Grant No.52208185。
文摘The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this type have been widely used for rapidly constructing the high-speed railway network,but few bridges have been tested by near-fault devastating earthquakes.The potential severe impact of the earthquake on the high-speed railway is not only the safety of the infrastructure,trains and passengers,but also economic loss due to interrupted railway use.Therefore,a field survey was carried out immediately after the earthquake to collect time-sensitive data.The damage to the bridge was carefully investigated,and quantitative analyses were conducted to better understand the mechanism of the bridge failure.It was found that seismic action perpendicular to the bridge’s longitudinal direction caused severe damage to the girders and rails,while none of the piers showed obvious deformation or cracking.The maximum values of transverse displacement,out-of-plane rotation and twisting angle of girders reached 212.6 cm,3.1 degrees and 19.9 degrees,respectively,causing severe damage to the bearing supports and anti-seismic retaining blocks.These observations provide a basis for improving the seismic design of high-speed railway bridges located in near-fault areas.
基金Projects(52022113,52278546)supported by the National Natural Science Foundation of ChinaProject(2020EEEVL0403)supported by the China Earthquake Administration。
文摘Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 52362049 and 52208446)the Natural Science Foundation of Gansu Province (Grant Nos. 22JR5RA344 and 22JR11RA152)+4 种基金the Special Funds for Guiding Local Scientifi c and Technological Development by the Central Government (Grant No. 22ZY1QA005)the Joint Innovation Fund Project of Lanzhou Jiaotong University and Corresponding Supporting University (Grant No. LH2023016)the Fundamental Research Funds for the Central Universities (2682023ZTZ010), the Lanzhou Science and Technology planning Project (Grant No. 2022-ZD-131)the key Research and Development Project of Lanzhou Jiaotong University (Grant No. LZJTU-ZDYF2302)the University Youth Fund Project of Lanzhou Jiaotong University (Grant No. 2021014)。
文摘The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.
基金funded by the National Railway Administration of the People’s Republic of China(No:N2023G001)Shaanxi Luyide Railroad and Bridge Technology Co.,Ltd.(No:W22L00520).
文摘Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportationinterruptions, delays and even threaten the safety of train operations. Exploring the impact of disturbances onsignaling equipment and establishing evaluation methods for the correlation between EMI and safety isurgently needed.Design/methodology/approach – This paper elaborates on the necessity and significance of studying theimpact of EMI as an unavoidable and widespread risk factor in the external environment of high-speed railwayoperations and continuous development. The current status of research methods and achievements from theperspectives of standard systems, reliability analysis and safety assessment are examined layer by layer.Additionally, it provides prospects for innovative ideas for exploring the quantitative correlation between EMIand signaling safety.Findings – Despite certain innovative achievements in both domestic and international standard systems andrelated research for ensuring and evaluating railway signaling safety, there’s a lack of quantitative and strategic research on the degradation of safety performance in signaling equipment due to EMI. A quantitativecorrelation between EMI and safety has yet to be established. On this basis, this paper proposes considerationsfor research methods pertaining to the correlation between EMI and safety.Originality/value – This paper overviews a series of methods and outcomes derived from domestic andinternational studies regarding railway signaling safety, encompassing standard systems, reliability analysisand safety assessment. Recognizing the necessity for quantitatively describing and predicting the impact ofEMI on high-speed railway signaling safety, an innovative approach using risk assessment techniques as abridge to establish the correlation between EMI and signaling safety is proposed.
文摘Purpose–Safety management is a key point and poses a challenge in joint testing.To detect and address potential accidents’hidden dangers early,this paper conducts research on the safety control technology for high-speed railway joint tests by incorporating the concept of hazardous events.Design/methodology/approach–Aiming at ensuring the safety of high-speed railway combined inspections and trials,this paper starts from the dual prevention mechanism.It introduces the concept of threatening events,defines them and analyzes the differences between threatening events and railway accidents.The paper also proposes a cause model for threatening events in high-speed railway combined inspections and trials,based on three types of hazard sources.Furthermore,it conducts research on the control strategies for these threatening events.Findings–The research on safety control technology for high-speed railway combined operation and testing,based on the analysis of threatened events,offers a new perspective for safety management in these operations.It also provides theoretical and practical support for the transition from passive prevention to active risk pre-control,which holds significant theoretical and practical value.Originality/value–The innovation mainly includes the following three aspects:(1)Building on the traditional dual prevention mechanism,which includes risk hierarchical management and control as well as hidden danger investigation and management,a triple prevention mechanism is proposed.This new mechanism adds the management of threatening events as the third line of defense.The aim is to more comprehensively identify and address potential security risks,thereby enhancing the efficiency and effectiveness of security management.(2)In this paper,the definition of a railway threatening event is clarified,and the causative model of a high-speed railway threatening event based on three kinds of danger sources is proposed.(3)This paper puts forward the control strategy of the high-speed railway combined operation and trial,which includes five key links:identification,reporting,analysis,rectification and feedback,which provides a new perspective for the safety management of the high-speed railway combined operation and trial and has important theoretical and application value.
基金National Natural Science Foundation of China under Grant 62203468Technological Research and Development Program of China State Railway Group Co.,Ltd.under Grant J2023G007+2 种基金Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)under Grant 2022QNRC001Youth Talent Program Supported by China Railway SocietyResearch Program of Beijing Hua-Tie Information Technology Corporation Limited under Grant 2023HT02.
文摘Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable centralized traffic control(CTC)system risk assessment method.Design/methodologylapproach-First,system-theoretic process analysis(STPA)is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis.Then,to enhance the accuracy of weight calculation,the fuzzy analytical hierarchy process(FAHP),fuzzy decision-making trial and evaluation laboratory(FDEMATEL)and entropy weight method are employed to calculate the subjective weight,relative weight and objective weight of each index.These three types of weights are combined using game theory to obtain the combined weight for each index.To reduce subjectivity and uncertainty in the assessment process,the backward cloud generator method is utilized to obtain the numerical character(NC)of the cloud model for each index.The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system.This cloud model is used to obtain the CTC system's comprehensive risk assessment.The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud.Finally,this process yields the risk assessment results for the CTC system.Findings-The cloud model can handle the subjectivity and fuzziness in the risk assessment process well.The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.Originality/value-This study provides a cloud model-based method for risk assessment of CTC systems,which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment,achieving effective risk assessment of CTC systems.It can provide a reference and theoretical basis for risk management of the CTC system.