期刊文献+
共找到4,255篇文章
< 1 2 213 >
每页显示 20 50 100
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation 被引量:1
1
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Recent progress in visualization and digitization of coherent transformation structures and application in high-strength steel
2
作者 Xuelin Wang Zhenjia Xie +1 位作者 Xiucheng Li Chengjia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1298-1310,共13页
High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of disloc... High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel. 展开更多
关键词 high-strength steel MICROSTRUCTURE VISUALIZATION DIGITIZATION quantification mechanical properties
下载PDF
Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars
3
作者 Jianmin ZHOU Shuo CHEN Yang CHEN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2013年第3期316-324,共9页
Three groups of concrete beams reinforced with high-strength steel bars were tested,and the crack width and deformation of the specimens were observed and studied.To facilitate the predictions,two simplified formulati... Three groups of concrete beams reinforced with high-strength steel bars were tested,and the crack width and deformation of the specimens were observed and studied.To facilitate the predictions,two simplified formulations according to a theory developed by the first author were proposed.The advantages of the formulations were verified by the test data and compared with several formulas in different codes. 展开更多
关键词 concrete beam high-strength steel bar crack width DEFORMATION
原文传递
Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation 被引量:1
4
作者 Cheng Yao Min Wang +5 位作者 Youjin Ni Dazhi Wang Haibo Zhang Lidong Xing Jian Gong Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1716-1728,共13页
The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distrib... The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distribution were analyzed. Results showed that the columnar crystals could deflect and break when the traveling-wave magnetic field had low current intensity. With the increase in current intensity, the secondary dendrite arm spacing and solute permeability decreased, and the columnar crystal transformed into an equiaxed crystal. The electromagnetic force caused by the traveling-wave magnetic field changed the temperature gradient and velocity magnitude and promoted the breaking and fusing of dendrites. Dendrite compactness and composition uniformity were arranged in descending order as follows:columnar-toequiaxed transition (high current intensity), columnar crystal zone (low current intensity), columnar-to-equiaxed transition (low current intensity), and equiaxed crystal zone (high current intensity). Verified numerical simulation results combined with the boundary layer theory of solidification front and dendrite breaking–fusing model revealed the dendrite deflection mechanism and growth process. When thermal stress is not considered, and no narrow segment can be found in the dendrite, the velocity magnitude on the solidification front of liquid steel can reach up to 0.041 m/s before the dendrites break. 展开更多
关键词 high-strength steel traveling-wave magnetic field dendrite growth numerical simulation
下载PDF
Effect of Freeze-thaw Cycles on Bond Strength between Steel Bars and Concrete 被引量:6
5
作者 JI Xiaodong SONG Yupu LIU Yuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期584-588,共5页
The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed... The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed steel bars, the bond stress-slip curves after freezing and thawing were obtained. The empirical equations of peak bond strength were proposed that the damage accounted for effects of freezing and thawing cycle. Meanwhile, the mechanism of bond deterioration between steel bars and concrete after freezing and thawing cycles was discussed. All these conclusions will be useful to the durability design and reliability calculation of RC structures in cold region. 展开更多
关键词 CONCRETE steel bars bond strength freeze-thaw cycles
下载PDF
Anti-seismic behavior of HRB400 reinforced steel bars 被引量:3
6
作者 秦斌 《Journal of Chongqing University》 CAS 2005年第1期23-27,共5页
The properties of anti-seismic HRB400 steel bars with 25 mm diameter were systematically investigated. The results showed that the properties of the HRB400 reinforced steel bars had been greatly enhanced comparing wit... The properties of anti-seismic HRB400 steel bars with 25 mm diameter were systematically investigated. The results showed that the properties of the HRB400 reinforced steel bars had been greatly enhanced comparing with HRB335 steel bars, i.e. coordination of strength and ductility, strain-aging sensibility, low temperature impact toughness, weld ability and high strain low cycle fatigue. The ductile-brittle transit temperatures of hot-rolled and strain-aged steel bars were evaluated as –17 °C and ?8 °C respectively, and the low temperature impact toughness of HRB400 steel bars remains to be improved. Transmission electron microscopy (TEM) and electron diffraction showed little vanadium existed in ferrite as VN, most of which existed in pearlite as alloy cementite which resulted in the declination of impact toughness. Methods were suggested to improve the anti- seismic properties of steel bars. 展开更多
关键词 HRB400 steel bars anti-seismic property VANADIUM
下载PDF
Tensile bond anchorage properties of Australian 500N steel bars in concrete 被引量:2
7
作者 李海涛 A.J.Deeks +1 位作者 苏小卒 黄东升 《Journal of Central South University》 SCIE EI CAS 2012年第10期2718-2725,共8页
In order to investigate the tensile bond anchorage properties of Australian 500N steel bars in concrete, 111 pullout tests were conducted. The precise bond slip values have been gained by using the laser displacement ... In order to investigate the tensile bond anchorage properties of Australian 500N steel bars in concrete, 111 pullout tests were conducted. The precise bond slip values have been gained by using the laser displacement sensor with high resolution, including the complete bond-slip curves. How the main anchorage factors such as concrete strength, bar diameter (8, I0, 12, 16, 20, 24, 28, 32 and 36 mm) the concrete covered, embedded length and transverse reinforcement influencing the bond anchorage properties was studied under tensile condition. The process of the tensile force-slip failure for Australian 500N reinforcing steel can be divided into five stages: elastic stage, local slip stage, slip in ascent stage, slip in descent stage and remnant stage. The formula for calculating the tensile bond strength of Australian 500N reinforcing bar in concrete was proposed according to the test results, including the consistent model for tensile bond-slip relationship. 展开更多
关键词 Australian 500N steel bars pullout test embedded length tensile bond strength bond-slip relationship concretestrength bar diameter
下载PDF
Mechanical Characteristics Test of Concrete Steel Bars Available in Côte d’Ivoire 被引量:1
8
作者 Conand Honoré Kouakou Ibrahima Bakayoko +1 位作者 Mamery Adama Serifou Edjikémé Emeruwa 《Journal of Materials Science and Chemical Engineering》 2020年第9期1-13,共13页
Buildings collapse has now become a recurrent phenomenon in C<span style="white-space:nowrap;">&#244;</span>te d’Ivoire. Therefore, this study was conducted to find out the reasons for these... Buildings collapse has now become a recurrent phenomenon in C<span style="white-space:nowrap;">&#244;</span>te d’Ivoire. Therefore, this study was conducted to find out the reasons for these disasters, and check in particular to the extent, and concrete steel bars produced in C<span style="white-space:nowrap;">&#244;</span>te d’Ivoire and used in buildings’ structures are involved. Samples having 6, 8, 10 and 12 mm in diameter steel taken from the five (5) major manufacturers or suppliers of the Ivorian market were subjected to physical, chemical and mechanical tests to determine their performance. A comparison of these results with the NF EN 10080 and NF A35 080-1 standards made it possible to calculate the probability to have out-of-standard products in a structure. Pieces having 60 cm were cut from three bars of the same thickness and then subjected to tests. These are the chemical test by optical emission spectrometer, physical tests by caliper measurements of diameter, height of bolts and ribs and calculation of linear mass, and tensile tests with the help of hydraulic press. These tests made it possible to determine the characteristics of the steel bars. Then, these characteristics were compared with standards NF EN 10080 and NF A35 080-1, in order to judge their conformity for construction. Finally, the likelihood of having non-standard steel bars in a structure is calculated. These tests indicate that the relative surfaces of the bolts of the various bars HA6, HA8, HA10 and HA12 vary from 0.146 to 0.323 respectively;0.120 to 0.312;0.101 to 0, 297 and 0.142 to 0.482. Likewise, their calculated linear masses of these bars are respectively between 28.3 mm<sup>2</sup> and 222 g/m;50.3 mm<sup>2</sup> and 395 g/m;78.5 mm<sup>2</sup> and 617 g/m;and 113 mm<sup>2</sup> and 888 g/m. In addition, their yield strengths and elongations at break vary from 344 MPa to 582 MPa and from 0.2% to 15% respectively. According to analysis of these results, 100% of steel bars would lead to a steel-concrete adhesion that complies with standard requirements and 100% have a linear mass or density lower than the standard. Similarly, on the mechanical aspect, 70% of steel bars have a yield strength lower than 400 MPa and 95% have an inappropriate ductility. Non-compliance with cross-sections, inadequate performance and non-compliance with the chemical composition of steel bars expose buildings to low durability and even sudden collapse of their structural elements. Concrete steel bars contribute a great deal to failures found in buildings. 展开更多
关键词 Building Collapse steel bars STANDARDS ADHESION Mechanical Performance
下载PDF
Electrically Conductive Concrete for Heating Using Steel Bars as Electrodes 被引量:2
9
作者 侯作富 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期523-526,共4页
The steel bars with good electrical conductivity were used as two kinds of electrodes in the making of carbon fiber(CF) electrically conductive concrete for heating.The results of the pertinent experiments illustrat... The steel bars with good electrical conductivity were used as two kinds of electrodes in the making of carbon fiber(CF) electrically conductive concrete for heating.The results of the pertinent experiments illustrate the design is viable.The change in electrical resistivity over three years' hydration time was studied when steel bars were used as lateral face electrodes and top bottom surface electrodes respectively.The temperature rise test was conducted to verify the heating properties of two kinds of concrete.Not only the study can reduce the CF volume content of electrically conductive concrete for heating to 0.58% or 0.36% according to different design,but also it will enhance the carrying capacity of the concrete roadway for heating. 展开更多
关键词 steel bar carbon fiber electrical resistivity temperature rise
原文传递
Development in oxide metallurgy for improving the weldability of high -strength low-alloy steel-Combined deoxidizers and microalloying elements
10
作者 Tingting Li Jian Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1263-1284,共22页
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du... The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy. 展开更多
关键词 oxide metallurgy technology heat affected zone high-strength low-alloy steel intragranular acicular ferrite microalloying element
下载PDF
Experimental Study on the Mechanical Properties of FRP Bars by Hybridizing with Steel Wires 被引量:1
11
作者 Ji-Hyun Hwang Dong-Woo Seo +1 位作者 Ki-Tae Park Young-Jun You 《Engineering(科研)》 2014年第7期365-373,共9页
Many studies on fiber reinforced polymer composite bars, as a substitute for reinforcing bars, have been conducted to solve corrosion of steel in reinforced concrete structures since 1960s’. However, FRP Bars have a ... Many studies on fiber reinforced polymer composite bars, as a substitute for reinforcing bars, have been conducted to solve corrosion of steel in reinforced concrete structures since 1960s’. However, FRP Bars have a lower elastic modulus than steel rebar as a structural component of concrete structures. Material properties with brittleness fracture and low elastic modulus can be improved by combining cheaper steel than carbon or aramid fibers. In this study, prototypes of FRP Bars with inserted steel wires (i.e., “FRP Hybrid Bars”) were developed and their tensile performance was compared depending on the proportion and diameter of steel. The FRP Hybrid Bars were made by dividing them into D13 and D16 according to the diameter and proportion of inserted wires: GFRPs were combined with wires having different diameters of 0.5 mm, 1.0 mm, and 2.0 mm in the proportion of 10%, 30%, 50%, and 70%, respectively. As a result of tensile tests, the elastic modulus of FRP Hybrid Bars were improved as 20% - 190% in comparison with the fully GFRP Bars. 展开更多
关键词 Fiber-Reinforced POLYMER (FRP) FRP Hybrid bar TENSILE Test steel WIRE
下载PDF
MEASUREMENT OF K_(IC)OF MEDIAN OR LOW STRENGTH STEEL USING ROUND BARS WITH CIRCUMFERENCIAL CRACK
12
作者 LIU Zaihua Huazhong University of Science and Technology,Wuhan,China ZHAO Dongli Bureau of Complete Sets of Equipment,State Machinery Commission,Beijing,China Dept.of Mechanics,Huazhong University of Science and Technology,Yujiashan,Wuhan,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第3期201-207,共7页
The size effect of tension round bars with circumferential crack was described and used to measure the plane-strain fracture toughness K_(1c) of median or low strength steel.The size of cylindrical specimen required f... The size effect of tension round bars with circumferential crack was described and used to measure the plane-strain fracture toughness K_(1c) of median or low strength steel.The size of cylindrical specimen required for K_(1c) measurement is much smaller than that of standard specimen.The J-integral values of the cylindrical sqecimens were calculated to characterize the size effect.The finite element calculution and fracture morphology analysis have been conducted to eyplain the fact that smaller cylindrical specimen could be used to measure K_(1c) of median or low strength steel. 展开更多
关键词 median or low strength steel fracture touglmess round bar specimen
下载PDF
3-D thermo-mechanical coupled FEM simulation of continuous hot rolling process of 60SiMnA spring steel bars and rods
13
作者 JiaheAi HuijuGao +2 位作者 TongchunZhao XishanXie andYuLiu 《Journal of University of Science and Technology Beijing》 CSCD 2004年第4期343-348,共6页
The 3-D thermo-mechanical coupled elasto-plastic finite element method (FEM)was used for the simulation of the two-pass continuous hot rolling process of 60SiMnA spring steelbars and rods using MARC/AutoForge3.1 softw... The 3-D thermo-mechanical coupled elasto-plastic finite element method (FEM)was used for the simulation of the two-pass continuous hot rolling process of 60SiMnA spring steelbars and rods using MARC/AutoForge3.1 software. The simulated results visualize the metal flow andthe dynamic evolutions of the strain, stress and temperature during the continuous hot rolling,especially inside the work-piece. It is shown that the non-uniform distributions of the strain,stress and temperature on the longitudinal and transverse sections are a distinct characteristic ofthe continuous hot rolling, which can be used as basic data for improving the tool design,predicting and controlling the micro-structural evolution of a bar and rod. 展开更多
关键词 60Si2MnA spring steel bar ROD elasto-plastic FEM thermo-mechanicalcoupled metal flow
下载PDF
In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels 被引量:12
14
作者 Chao Gu Wen-qi Liu +1 位作者 Jun-he Lian Yan-ping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期826-834,共9页
A numerical study of stress distribution and fatigue behavior in terms of the effect of voids adjacent to inclusions was conducted with finite element modeling simulations under different assumptions.Fatigue mechanism... A numerical study of stress distribution and fatigue behavior in terms of the effect of voids adjacent to inclusions was conducted with finite element modeling simulations under different assumptions.Fatigue mechanisms were also analyzed accordingly.The results showed that the effects of inclusions on fatigue life will distinctly decrease if the mechanical properties are close to those of the steel matrix.For the inclusions,which are tightly bonded with the steel matrix,when the Young’s modulus is larger than that of the steel matrix,the stress will concentrate inside the inclusion;otherwise,the stress will concentrate in the steel matrix.If voids exist on the interface between inclusions and the steel matrix,their effects on the fatigue process differ with their positions relative to the inclusions.The void on one side of an inclusion perpendicular to the fatigue loading direction will aggravate the effect of inclusions on fatigue behavior and lead to a sharp stress concentration.The void on the top of inclusion along the fatigue loading direction will accelerate the debonding between the inclusion and steel matrix. 展开更多
关键词 INCLUSION high-strength bearing steel FATIGUE numerical study stress distribution
下载PDF
Corrosion behavior of high-strength spring steel for high-speed railway 被引量:6
15
作者 Gang Niu Yin-li Chen +2 位作者 Hui-bin Wu Xuan Wang Di Tang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第5期527-535,共9页
The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transform... The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transformation model describing the conversion of γ-Fe OOH to α-Fe OOH were constructed. The results indicated that, at the initial corrosion stage, the corrosion resistance was gradually improved with the addition of Cr; however, with the addition of alloying element V, the corrosion resistance decreased. These results were attributed mainly to the initial corrosion stage being closely related to the matrix microstructure parameters such as grain-boundary character and dislocation density. After the rust layer was formed at a later corrosion stage, the corrosion resistance was reinforced with the addition of Cr and V because Cr strongly influenced the composition, structure, and morphology of the corrosion products. The results presented herein show that Cr was conducive to the transformation of γ-Fe OOH into α-Fe OOH. Moreover, V and Cr exhibited obvious synergy and were enriched in the inner layer of the corrosion products. 展开更多
关键词 high-strength spring steel corrosion resistance ALLOYING elements RUST LAYERS evolution model
下载PDF
Toughening mechanisms of a high-strength acicular ferrite steel heavy plate 被引量:5
16
作者 Zhi-qiang Cao Yan-ping Bao +3 位作者 Zheng-hai Xia Deng Luo Ai-min Guo Kai-ming Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第5期567-572,共6页
An ultra-low carbon acicular ferrite steel heavy plate was obtained with an advanced thermo-mechanical control process-relaxed precipitation controlled transformation (TMCP-RPC) at Xiangtan Steel, Valin Group. The h... An ultra-low carbon acicular ferrite steel heavy plate was obtained with an advanced thermo-mechanical control process-relaxed precipitation controlled transformation (TMCP-RPC) at Xiangtan Steel, Valin Group. The heavy plate has a tensile strength of approximately 600 MPa with a lower yield ratio. The impact toughness of the heavy plate achieves 280 J at ?40°C. The fine-grained mixed microstructures of the heavy plate mainly consist of acicular ferrite, granular bainite, and polygonal ferrite. The high strength and excellent toughness of the heavy plate are attributed to the formation of acicular ferrite microstructure. The prevention of blocks of martensite/retained austenite (M/A) and the higher cleanness are also responsible for the superior toughness. 展开更多
关键词 high-strength steel MICROSTRUCTURE mechanical properties acicular ferrite
下载PDF
Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel 被引量:8
17
作者 Yi-shuang Yu Bin Hu +5 位作者 Min-liang Gao Zhen-jia Xie Xue-quan Rong Gang Han Hui Guo Cheng-jia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期816-825,共10页
Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous mi... Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous microstructure consisting of soft intercritical ferrite and hard tempered martensite,resulting in a low yield ratio(YR)and high impact toughness in a high-strength low-alloy steel.The initial yielding and subsequent work hardening behavior of the steel during tensile deformation were modified by the presence of soft intercritical ferrite after intercritical annealing,in comparison to the steel with full martensitic microstructure.The increase in YR was related to the reduction in hardness difference between the soft and hard phases due to the precipitation of nano-carbides and the recovery of dislocations during tempering.The excellent low-temperature toughness was ascribed not only to the decrease in probability of microcrack initiation for the reduction of hardness difference between two phases,but also to the increase in resistance of microcrack propagation caused by the high density of high angle grain boundaries. 展开更多
关键词 heterogeneous microstructure yield ratio impact toughness intercritical heat treatment high-strength low-alloy steel
下载PDF
Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel 被引量:5
18
作者 Rong-jian Shi Zi-dong Wang +1 位作者 Li-jie Qiao Xiao-lu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第4期644-656,共13页
We investigated the critical influence of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement(HE)of high-strength steel.The results reveal that the mechanical strength and elongation of quenc... We investigated the critical influence of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement(HE)of high-strength steel.The results reveal that the mechanical strength and elongation of quenched and tempered steel(919 MPa yield strength,17.11%elongation)are greater than those of hot-rolled steel(690 MPa yield strength,16.81%elongation)due to the strengthening effect of insitu Ti_(3)O_(5)–Nb(C,N)nanoparticles.In addition,the HE susceptibility is substantially mitigated to 55.52%,approximately 30%lower than that of steels without in-situ nanoparticles(84.04%),which we attribute to the heterogeneous nucleation of the Ti_(3)O_5 nanoparticles increasing the density of the carbides.Compared with hard TiN inclusions,the spherical and soft Al_(2)O_(3)–MnS core–shell inclusions that nucleate on in-situ Al_(2)O_(3) particles could also suppress HE.In-situ nanoparticles generated by the regional trace-element supply have strong potential for the development of high-strength and hydrogen-resistant steels. 展开更多
关键词 in-situ nanoparticles hydrogen embrittlement high-strength steel mechanical properties MICROSTRUCTURE
下载PDF
Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel 被引量:8
19
作者 En-dian Fan Shi-qi Zhang +3 位作者 Dong-han Xie Qi-yue Zhao Xiao-gang Li Yun-hua Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第2期249-256,共8页
We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging ... We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging and fracture analysis.The results reveal that the HIC resistance of Nb-bearing steel is obviously superior to that of Nb-free steel,with the fractured Nb-bearing steel in the SSRT exhibiting a smaller ratio of elongation reduction(Iδ).However,as the hydrogen traps induced by NbC precipitates approach hydrogen saturation,the effect of the precipitates on the HIC resistance attenuate.We speculate that the highly dispersed nanosized NbC precipitates act as irreversible hydrogen traps that hinder the accumulation of hydrogen at potential crack nucleation sites.In addition,much like Nb-free steel,the Nb-bearing steel exhibits both H-solution strengthening and the resistance to HIC. 展开更多
关键词 nanosized NbC precipitates high-strength low-alloy steel hydrogen-induced cracking slow-strain-rate tensile hydrogen charging
下载PDF
A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime 被引量:7
20
作者 Chengqi Sun Xiaolong Liu Youshi Hong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期383-391,共9页
In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in ... In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life. 展开更多
关键词 Very high-cycle fatigue - high-strength steels Fatigue life Inclusion size Crack growth rate
下载PDF
上一页 1 2 213 下一页 到第
使用帮助 返回顶部