Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do ...Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.展开更多
Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects ...Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects on their gelation performance, which has been little researched. In this study, the high-temperature gelation performance, chemical structure, and microstructure of polymer gels prepared from two nanomaterials (i.e., nano-SiO_(2) and nano-TiO_(2)) were measured. The conventional HPAM/PEI polymer gel system was employed as the control sample. Results showed that the addition of nano-TiO_(2) could significantly enhance the gel strength of HPAM/PEI gel at 80 ℃. The gel strength of the enhanced HPAM/PEI gel with 0.1 wt% nano-TiO_(2) could reach grade I. The system also had excellent high-temperature stability at 150 ℃. The enhanced HPAM/PEI gel with 0.02 wt% nano-TiO_(2) reached the maximum gel strength at 150 ℃ with a storage modulus (G′) of 15 Pa, which can meet the need for efficient plugging. However, the nano-SiO_(2) enhanced HPAM/PEI polymer gel system showed weaker gel strength than that with nano-TiO_(2) at both 80 and 150 ℃ with G′ lower than 5 Pa. Microstructures showed that the nano-TiO_(2) enhanced HPAM/PEI gel had denser three-dimensional (3D) mesh structures, which makes the nano-TiO_(2) enhanced HPAM/PEI gel more firmly bound to water. The FT-IR results also confirmed that the chemical structure of the nano-TiO_(2) enhanced HPAM/PEI gel was more thermally stable than nano-SiO_(2) since there was a large amount of –OH groups on the structure surface. Therefore, nano-TiO_(2) was more suitable as the reinforcing material for HPAM/PEI gels for high-temperature petroleum reservoir conformance improvement.展开更多
CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systema...CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systematic analysis on the heat mining mechanism and performance of CO_(2),as well as the problems that may occur during geothermal energy exploitation at specific gas reservoir conditions.In this paper,a base numerical simulation model of a typical depleted high-temperature gas reservoir was established to simulate the geothermal energy exploitation processes via recycling CO_(2) and water,with a view to investigate whether and/or at which conditions CO_(2) is more suitable than water for geothermal energy exploitation.The problems that may occur during the CO_(2)-based geothermal energy exploitation were also analyzed along with proposed feasible solutions.The results indicate that,for a depleted low-permeability gas reservoir with dimensions of 1000 m×500 m×50 m and temperature of 150℃ using a single injection-production well group for 40 years of operation,the heat mining rate of CO_(2) can be up to 3.8 MW at a circulation flow rate of 18 kg s^(-1)due to its high mobility along with the flow path in the gas reservoir,while the heat mining rate of water is only about 2 MW due to limitations on the injectivity and mobility.The reservoir physical property and injection-production scheme have some effects on the heat mining rate,but CO_(2)always has better performance than water at most reservoir and operation conditions,even under a high water saturation.The main problems for CO_(2) circulation are wellbore corrosion and salt precipitation that can occur when the reservoir has high water saturation and high salinity,in which serious salt precipitation can reduce formation permeability and result in a decline of CO_(2) heat mining rate (e.g.up to 24%reduction).It is proposed to apply a low-salinity water slug before CO_(2)injection to reduce the damage caused by salt precipitation.For high-permeability gas reservoirs with high water saturation and high salinity,the superiority of CO_(2) as a heat transmission fluid becomes obscure and water injection is recommended.展开更多
Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure(HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques(PPTs). To improve...Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure(HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques(PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
Yinggehai Basin locates in the northern South China Sea. Since the Cainozoic Era, crust has several strong tension: the basin subsides quickly, the deposition is thick, and the crust is thin. In the central basin, for...Yinggehai Basin locates in the northern South China Sea. Since the Cainozoic Era, crust has several strong tension: the basin subsides quickly, the deposition is thick, and the crust is thin. In the central basin, formation pressure coefficient is up to 2.1;Yinggehai Basin is a fomous high-temperature overpressure basin.YinggehaiBasin’s in-depth, especially high-temperature overpressure stratum has numerous large-scale exploration goals. As a result of high-temperature overpressure basin’s perplexing geological conditions and geophysical analysis technical limitations, this field of gas exploration can’t be carried out effectively, which affects the process of gas exploration seriously. A pressure prediction model of the high-temperature overpressure basin in different structural positions is summed up by pressure forecast pattern research in recent years, which can be applied to target wells pre-drilling pressure prediction and post drilling pressure analysis of Yinggehai Basin. The model has small erroneous and high rate of accuracy. The Yinggehai Basin A well drilling is successful in 2010, and gas is discovered in high-temperature overpressure stratum, which proved that reservoir can be found in high-temperature overpressure stratum. It is a great theoretical breakthrough of reservoir knowledge.展开更多
Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and hi...Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%.展开更多
Micro-scale and nano-scale dispersed gel particles(DPG)are capable of deep migration in oil reservoirs due to their deformability,viscoelasticity,and suitable particle size.Therefore,it has been widely studied and app...Micro-scale and nano-scale dispersed gel particles(DPG)are capable of deep migration in oil reservoirs due to their deformability,viscoelasticity,and suitable particle size.Therefore,it has been widely studied and applied in reservoir conformance control in recent years.However,for highly permeable channels,their plugging performance is still limited.In addition,conventional in situ cross-linked polymer gels(ISCPGs)have fast gelation time under extremely high-temperature conditions,which often causes problems such as difficulty in pumping.Therefore,a re-cross linkable dispersed particle gel(RDPG)system applied for conformance control in highly permeable channels of extremely high-temperature petroleum reservoirs was investigated.The particle size distribution,gelation time,gel strength,injection performance,and perfo rmance strength in po rous media were investigated using a laser particle size meter,the Sydansk bottle test method,rheometer,and core displacement experiments,respectively.Results show that the RDPG suspension can be stable for more than 6 months at room temperature with storage modulus G’much lower than 10 Pa.It can pass through the pore throat by elastic deformation effect and does not cause strong blockage.Moreover,it can undergo re-crosslinking reaction at 150℃to form a strong bulk gel.The gel strength G’of re-crosslinked RDPG can be as high as 69.3 Pa,which meets the strength requirement of conformance control.The RDPG suspension has the properties of easy injection,and it also has strong plugging,and high-temperature resistance after re-crosslinked in the core,which can be a very promising material for conformance improvement in extremely high-temperature reservoirs.展开更多
Deep coalbed methane exists in high-temperature and high-pressure reservoirs. To elucidate the dynamic-change laws of the deep coal reservoir porosity and permeability characteristics in the process of coalbed methane...Deep coalbed methane exists in high-temperature and high-pressure reservoirs. To elucidate the dynamic-change laws of the deep coal reservoir porosity and permeability characteristics in the process of coalbed methane production, based on three pieces of low- to medium-rank coal samples in the eastern Junggar Basin, Xinjiang, we analyse their mercury-injection pore structures. We measured the porosity and permeability of the coal samples at various temperatures and confining pressures by high-temperature and confining pressure testing. The results show that the porosity of a coal sample decreases exponentially with increasing effective stress. With increasing temperature, the initial porosity increases for two pieces of relatively low-rank coal samples. The increased rate of porosity decreases with increasing confining pressure. With increasing temperature, the initial porosity of a relatively high-rank coal sample decreases, and the rate of change of the porosity become faster. An exponential relationship exists between the porosity and permeability. With increasing coal rank, the initial porosity and permeability decrease. The change rate of the permeability decreases with increasing porosity.展开更多
文摘Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01A250)the CNPC Strategic Cooperation Science and Technology Project(ZLZX2020-01-04-04).
文摘Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects on their gelation performance, which has been little researched. In this study, the high-temperature gelation performance, chemical structure, and microstructure of polymer gels prepared from two nanomaterials (i.e., nano-SiO_(2) and nano-TiO_(2)) were measured. The conventional HPAM/PEI polymer gel system was employed as the control sample. Results showed that the addition of nano-TiO_(2) could significantly enhance the gel strength of HPAM/PEI gel at 80 ℃. The gel strength of the enhanced HPAM/PEI gel with 0.1 wt% nano-TiO_(2) could reach grade I. The system also had excellent high-temperature stability at 150 ℃. The enhanced HPAM/PEI gel with 0.02 wt% nano-TiO_(2) reached the maximum gel strength at 150 ℃ with a storage modulus (G′) of 15 Pa, which can meet the need for efficient plugging. However, the nano-SiO_(2) enhanced HPAM/PEI polymer gel system showed weaker gel strength than that with nano-TiO_(2) at both 80 and 150 ℃ with G′ lower than 5 Pa. Microstructures showed that the nano-TiO_(2) enhanced HPAM/PEI gel had denser three-dimensional (3D) mesh structures, which makes the nano-TiO_(2) enhanced HPAM/PEI gel more firmly bound to water. The FT-IR results also confirmed that the chemical structure of the nano-TiO_(2) enhanced HPAM/PEI gel was more thermally stable than nano-SiO_(2) since there was a large amount of –OH groups on the structure surface. Therefore, nano-TiO_(2) was more suitable as the reinforcing material for HPAM/PEI gels for high-temperature petroleum reservoir conformance improvement.
基金This research was financially supported by the National Natural Science Foundation of China(Grant No.51674282)the National Key R&D Programs of China(Grant No.2019YFB1504201,2019YFB1504203,and 2019YFB1504204)+2 种基金the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGGC09 and CUG200637)the Open Project Program of Key Laboratory of Groundwater Resources and Environment(Jilin University),Ministry of Education(Grant No.202005001KF)Opening Fund of Key Laboratory of Unconventional Oil&Gas Development(China University of Petroleum(East China)),Ministry of Education(Grant No.19CX05005A-201)。
文摘CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systematic analysis on the heat mining mechanism and performance of CO_(2),as well as the problems that may occur during geothermal energy exploitation at specific gas reservoir conditions.In this paper,a base numerical simulation model of a typical depleted high-temperature gas reservoir was established to simulate the geothermal energy exploitation processes via recycling CO_(2) and water,with a view to investigate whether and/or at which conditions CO_(2) is more suitable than water for geothermal energy exploitation.The problems that may occur during the CO_(2)-based geothermal energy exploitation were also analyzed along with proposed feasible solutions.The results indicate that,for a depleted low-permeability gas reservoir with dimensions of 1000 m×500 m×50 m and temperature of 150℃ using a single injection-production well group for 40 years of operation,the heat mining rate of CO_(2) can be up to 3.8 MW at a circulation flow rate of 18 kg s^(-1)due to its high mobility along with the flow path in the gas reservoir,while the heat mining rate of water is only about 2 MW due to limitations on the injectivity and mobility.The reservoir physical property and injection-production scheme have some effects on the heat mining rate,but CO_(2)always has better performance than water at most reservoir and operation conditions,even under a high water saturation.The main problems for CO_(2) circulation are wellbore corrosion and salt precipitation that can occur when the reservoir has high water saturation and high salinity,in which serious salt precipitation can reduce formation permeability and result in a decline of CO_(2) heat mining rate (e.g.up to 24%reduction).It is proposed to apply a low-salinity water slug before CO_(2)injection to reduce the damage caused by salt precipitation.For high-permeability gas reservoirs with high water saturation and high salinity,the superiority of CO_(2) as a heat transmission fluid becomes obscure and water injection is recommended.
基金funded by the National Basic Research Program of China (No. 2015CB251201)the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1606401)+3 种基金the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ13)the Major National Science and Technology Programs (No. 016ZX05024-001-002)the Natural Science Foundation of Hainan (No. ZDYF2016215)Key Science and Technology Foundation of Sanya (Nos. 2017PT13, 2017PT2014)
文摘Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure(HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques(PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.
文摘Yinggehai Basin locates in the northern South China Sea. Since the Cainozoic Era, crust has several strong tension: the basin subsides quickly, the deposition is thick, and the crust is thin. In the central basin, formation pressure coefficient is up to 2.1;Yinggehai Basin is a fomous high-temperature overpressure basin.YinggehaiBasin’s in-depth, especially high-temperature overpressure stratum has numerous large-scale exploration goals. As a result of high-temperature overpressure basin’s perplexing geological conditions and geophysical analysis technical limitations, this field of gas exploration can’t be carried out effectively, which affects the process of gas exploration seriously. A pressure prediction model of the high-temperature overpressure basin in different structural positions is summed up by pressure forecast pattern research in recent years, which can be applied to target wells pre-drilling pressure prediction and post drilling pressure analysis of Yinggehai Basin. The model has small erroneous and high rate of accuracy. The Yinggehai Basin A well drilling is successful in 2010, and gas is discovered in high-temperature overpressure stratum, which proved that reservoir can be found in high-temperature overpressure stratum. It is a great theoretical breakthrough of reservoir knowledge.
基金This work has been Sponsored by CNPC Innovation Found(Grant No.2021DQ02-0202)Besides,the authors gratefully appreciate the financial support of the Science Foundation of China University of Petroleum,Beijing(Grant No.2462020XKBH013)Financial supports from the National Natural Science Foundation of China(Grant No.52174046)is also significantly acknowledged.
文摘Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%.
基金supported by the Research Foundation of China University of Petroleum-Beijing at Karamay(No.XQZX20200010)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2019D01B57)+2 种基金the Tianshan Talent Project(No.2019Q025)the Sichuan Province Regional Innovation Cooperation Project(No.2020YFQ0036)the CNPC Strategic Cooperation Science and Technology Project(ZLZX2020-01-04-04)
文摘Micro-scale and nano-scale dispersed gel particles(DPG)are capable of deep migration in oil reservoirs due to their deformability,viscoelasticity,and suitable particle size.Therefore,it has been widely studied and applied in reservoir conformance control in recent years.However,for highly permeable channels,their plugging performance is still limited.In addition,conventional in situ cross-linked polymer gels(ISCPGs)have fast gelation time under extremely high-temperature conditions,which often causes problems such as difficulty in pumping.Therefore,a re-cross linkable dispersed particle gel(RDPG)system applied for conformance control in highly permeable channels of extremely high-temperature petroleum reservoirs was investigated.The particle size distribution,gelation time,gel strength,injection performance,and perfo rmance strength in po rous media were investigated using a laser particle size meter,the Sydansk bottle test method,rheometer,and core displacement experiments,respectively.Results show that the RDPG suspension can be stable for more than 6 months at room temperature with storage modulus G’much lower than 10 Pa.It can pass through the pore throat by elastic deformation effect and does not cause strong blockage.Moreover,it can undergo re-crosslinking reaction at 150℃to form a strong bulk gel.The gel strength G’of re-crosslinked RDPG can be as high as 69.3 Pa,which meets the strength requirement of conformance control.The RDPG suspension has the properties of easy injection,and it also has strong plugging,and high-temperature resistance after re-crosslinked in the core,which can be a very promising material for conformance improvement in extremely high-temperature reservoirs.
基金funded by the National Natural Science Fundation of China(Nos.41672149,41302131,41362009)the Key Project of the National Natural Science Foundation of China(No.41530314)+2 种基金the Scientific Research Foundation of the Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of the Ministry of Education,China University of Mining and Technology,(No.2017-001)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Nos.2016ZX05044-002,2011ZX05033,2011ZX05034)the Fundamental Research Funds for the Central Universities(No.2012QNB32)
文摘Deep coalbed methane exists in high-temperature and high-pressure reservoirs. To elucidate the dynamic-change laws of the deep coal reservoir porosity and permeability characteristics in the process of coalbed methane production, based on three pieces of low- to medium-rank coal samples in the eastern Junggar Basin, Xinjiang, we analyse their mercury-injection pore structures. We measured the porosity and permeability of the coal samples at various temperatures and confining pressures by high-temperature and confining pressure testing. The results show that the porosity of a coal sample decreases exponentially with increasing effective stress. With increasing temperature, the initial porosity increases for two pieces of relatively low-rank coal samples. The increased rate of porosity decreases with increasing confining pressure. With increasing temperature, the initial porosity of a relatively high-rank coal sample decreases, and the rate of change of the porosity become faster. An exponential relationship exists between the porosity and permeability. With increasing coal rank, the initial porosity and permeability decrease. The change rate of the permeability decreases with increasing porosity.