Fatty Acyl-ACP thioesterase(FAT)is a key enzyme controlling oil biosynthesis in plant seeds.FATs can be divided into two subfamilies,FATA and FATB according to their amino acid sequences and substrate specificity.The ...Fatty Acyl-ACP thioesterase(FAT)is a key enzyme controlling oil biosynthesis in plant seeds.FATs can be divided into two subfamilies,FATA and FATB according to their amino acid sequences and substrate specificity.The Upland cotton genome contains 20 GhFAT genes,amongst which 6 genes were of the GhFATA subfamily and 14 of the GhFATB subfamily.The 20 GhFAT genes are unevenly distributed on 14 chromosomes.The GhFATA genes have 5 or 7 exons and the GhFATB genes have 6 or 7 exons.All GhFAT proteins have the conserved Acyl-ACP_TE domain and PLN02370 super family,the typical characteristics of plant thioesterases.Analyses of the expression level of GhFATs and the compositions of fatty acid in 5-60 days-post-anthesis seeds showed that the ratio of saturated fatty acids to unsaturated fatty acids was consistent with the expression profile of GhFATB12,GhFATB3,and GhFATB10;the ratio of monounsaturated fatty acid to polyunsaturated fatty acids was consistent with the expression profile of GhFATA3.The oil contents of mature cottonseeds were positively correlated with the contents of palmitic acid and linolenic acid as well as seed vigor.These results provide essential information for further exploring the role(s)of the specific GhFATs in determining oil biosynthesis and cottonseed compositions.展开更多
[Objective] This study was conducted to clarify the biological information of PHYB genes in upland cotton (Gossypium hirsutum). [Method] Two PHYB genes were identified from the genome database of allotetraploid cott...[Objective] This study was conducted to clarify the biological information of PHYB genes in upland cotton (Gossypium hirsutum). [Method] Two PHYB genes were identified from the genome database of allotetraploid cotton (G. hirsutum L. acc. TM-1), and were found to be distributed on subgenomes A10 and D10. And then bioinformatic analysis on these two genes were performed. [Result] The PHYB genes of upland cotton had the same motifs and domains with the PHYB genes in other plant species, and even the number and location of the motifs and domains of these PHYB genes were consistent. The PHYB amino acid sequence alignment and the phylogenetic tree constructed based on PHYB amino acid sequence of these plant species indicated that the two PHYB genes in upland cotton had higher homology and closer evolutionary relationships with cocoa (Theobroma cacao), but lower similarity to PHYB genes in monocotyledonous plants, such as rice (Oryza saitva) and corn (Zea mays). The comparison of PHYB gene structure also revealed that plant PHYB gene was more conserved during evolution. The autophosphorylation of dozens of phosphorylation sites in upland cotton PHYB gene may be essential for the functions of phytochromes and plays a significant role in regulating phytochrome-mediated signal transduction pathways. [Conclusion] The results of this paper will provide a theoretical basis for the cloning and functional research of PHYB genes.展开更多
Sixteen cotton cultivars widely planted in China were sowed under five different drought concentrations(0,2.5,5,7.5,and 10%)using PEG6000 to screen the indices of drought resistance identification and explore the drou...Sixteen cotton cultivars widely planted in China were sowed under five different drought concentrations(0,2.5,5,7.5,and 10%)using PEG6000 to screen the indices of drought resistance identification and explore the drought resistance of different cotton cultivars.Eighteen physiological indices including root,stem,and leaf water contents(RWC,SWC,and LWC),net photosynthetic rate(Pn),the maximum photochemical quantum yield(Fv/Fm),the actual photochemical quantum yield(ΦPSII),non-photochemical quenching coefficient(NPQ),leaf water potential(LWP),osmotic potential(Ψs),leaf relative conductivity(REC),leaf proline content(Pro),leaf and root soluble protein contents(LSPC and RSPC),leaf and root malondialdehyde(MDA)contents(LMDA and RMDA),root superoxide dismutase,peroxidase,and catalase activities(RSOD,RPOD,and RCAT)were measured.Results indicated the 18 physiological indices can be converted into five or six independent comprehensive indices by principal component analysis,and nine typical indices(Fv/Fm,SWC,LWP,Pro,LMDA,RSPC,RMDA,RSOD,and RCAT)screened out by a stepwise regression method could be utilized to evaluate the drought resistance.Moreover,the 16 cotton cultivars were divided into four types:drought sensitive,drought weak sensitive,moderate drought resistant,and drought resistant types.The resistance ability of two selected cotton cultivars(drought resistant cultivar,Dexiamian 1;drought sensitive cultivar,Yuzaomian 9110)with contrasting drought sensitivities were further verified by pot experiment.Results showed that the responses of final cotton biomass,yield,and yield composition to drought were significantly different between the two cultivars.In conclusion,drought resistant cultivar Dexiamian 1 and drought sensitive cultivar Yuzaomian 9110 were screened through hydroponics experiment,which can be used as ideal experimental materials to study the mechanism of different cotton cultivars with contrasting drought sensitivities in response to drought stress.展开更多
Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in...Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in 2008 and 2009 in 13 counties to determine if increased planting population density (PPD) would break the stagnant yield. The results showed that significant differences among the fields existed in theoretical yield, PPD, and bolls per square meter (BPM). The lowest yield of 1 641.1 kg ha-I was resulted from the lowest PPD of 1.7 plants m-2 and the lowest BPM of 71.8 bolls m-2, while the highest yield of 2 779.7 kg ha-~ was resulted from the highest PPD of 2.5 plants m-2, and the highest BPM of 129.4 bolls m-z. Plant mapping revealed that boll retention rate (BRR) was maintained over 30 or 40% for the first 17-18 fruiting branches (FBs) and decreased dramatically thereafter, rotten boll rate (RBR) decreased, but open boll rate (OBR) rose first and dropped later with rising FB from the bottom to the top. But BRR, RBR, and OBR were all dropped with the fruiting positions (FPs) extending outwards. The optimum range of plant density would be 2-3 plants m-2 and the proper individual plant structure would be 16-19 FBs with 5-7 FPs for cotton production in Hubei Province.展开更多
Fiber length of cotton(Gossypium hirsutum L.)decreases under drought stress,potassium(K)could diminish the decreased caused by drought,but the mechanism associated with this alleviation effect is not clear.We evaluate...Fiber length of cotton(Gossypium hirsutum L.)decreases under drought stress,potassium(K)could diminish the decreased caused by drought,but the mechanism associated with this alleviation effect is not clear.We evaluated the effect of K on fiber elongation using two cotton cultivars,Simian 3 and Siza 3,grown in well-watered and drought-stressed conditions.Potassium fertilizer(K2O)was applied 0,150,or 300 kg ha?1 in each growing condition.Drought stress reduced the final fiber length due to a decline in the maximum rate of rapid elongation(Vmax,mmday?1).The application of K alleviated the droughtinduced fiber length reduction by increasing Vmax.At 10 and 15 days post-anthesis(DPA),drought significantly reduced osmotic potential(OP)and increased K+and malate contents at all K rates,relative to well-watered conditions,which was associated with increased activities of phosphoenolpyruvate carboxylase(PEPC),V-ATPase,PPase,and PM H+-ATPase in cotton fiber.However,the relative contribution of K+and malate to OP declined under drought in comparison with well-watered condition.Compared with control without K,K application decreased OP and increased the accumulation of osmolytes(K+,malate and soluble sugar)as well as the activities of related enzymes in fiber irrespective of water treatments.Moreover,K application increased osmotic adjustment during drought,and improved the contribution of K+and malate to OP,especially under drought stress.This study showed that drought decreased fiber length by reducing Vmax,and K application ameliorates the decline in fiber elongation due to drought by enhancing osmolytes accumulation and their contribution to OP in fiber cells.展开更多
Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we...Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we had selected two cotton hybrids(Shiza 2,Xinluzao 43) and two conventional varieties(Xinluzao 13,Xinluzao 33) with different plant types in this experiment.We studied canopy characteristics and their correlation with photosynthesis in populations of different genotypes and plant types during yield formation in Xinjiang,China.Canopy characteristics including leaf area index(LAI),mean foliage tilt angle(MTA),canopy openness(DIFN),and chlorophyll relative content(SPAD).The results showed that LAI and SPAD peak values were higher and their peak values arrived later,and the adjustment capacity of MTA during the flowering and boll-forming stages was stronger in Xinluzao 43,with the normal-leaf,pagoda plant type,than these values in other varieties.DIFN of Xinluzao 43 remained between0.09 and 0.12 during the flowering and boll-forming stages,but was lower than that in the other varieties during the boll-opening stage.Thus,these characteristics of Xinluzao 43 were helpful for optimizing the light environment and maximizing light interception,thereby increasing photosynthetic capability.The photosynthetic rate and photosynthetic area were thus affected by cotton genotype as changes in the adjustment range of MTA,increases in peak values of LAI and SPAD,and extension of the functional stage of leaves.Available photosynthetic area and canopy light environment were affected by cotton plant type as changes in MTA and DIFN.Heterosis expression and plant type development were coordinated during different growth stages,the key to optimizing the canopy structure and further increasing yield.展开更多
An improved protocol has been developed for somatic embryogenesis and plant regeneration of recalcitrant cotton cultivars. High callus frequencies and embryogenic tissue were developed in MSB medium supplemented with ...An improved protocol has been developed for somatic embryogenesis and plant regeneration of recalcitrant cotton cultivars. High callus frequencies and embryogenic tissue were developed in MSB medium supplemented with gradient concentrations of KT and 2,4-D, their concentration decreasing from 0.1 to 0.01 mg·L^-1. Somatic embryos were successfully incubated in 1/2 macronutrient MSB suspension supplemented with 0.5 g· L^-1 glutamine and 0.5 g·L^-1 asparagine. Decrease in macronutrient concentration of MSB significantly alleviated browning and was beneficial to suspension cells. Transformation of somatic embryos into plants was induced in MSB medium supplemented with 3% sucrose, 0.5 g·L^-1 glutamine, 0.5 g·L^-1 asparagine, and 6.0 g·L^-1 agar. The effect of sucrose as carbohydrate was better than that of glucose for plant germination. Using this protocol, regenerated plantlets from the CCRI521 and Zhongzhi86-6 reached to as much as 19.6 and 18.5% somatic embryos, respectively.展开更多
Leaf is a essential part of the plants for photosynthetic activities which mainly economize the resources for boll heath. Significant variations of leaf shapes across the Gossypium sp. considerably influence the infil...Leaf is a essential part of the plants for photosynthetic activities which mainly economize the resources for boll heath. Significant variations of leaf shapes across the Gossypium sp. considerably influence the infiltration of sunlight for photosynthesis. To understand the genetic variants and molecular processes underlying for cotton leaf shape, we used F2 population derived from upland cotton genotype P30A (shallow-lobed leaf) and sea-island cotton genotype ISR (deep-lobed leaf) to map leaf deep lobed phenotype controlling genes LBL1 and LBL2. Genetic analysis and localization results have unmasked the position and interaction between both loci of LBL1 and LBL2, and revealed the co-dominance impact of the genes in regulating depth of leaf blades lobes in cotton. LBL1 had been described as a main gene and member of transcription factor family leucine zipper (HD-ZIPI) from a class I homologous domain factor Gorai.OO2G244000. The qRT-PCR results elaborated the continuous change in expression level of LBL1 at different growth stages and leaf parts of cotton. Higher expression level was observed in mature large leaves followed by medium and young leaves respectively. For further confirmation, plants were tested from hormonal induction treatments, which explained that LBL 1 expression was influenced by hormonal signaling. Moreover, the highest expression level was detected in brassinolides (BR) treatment as compared to other hormones, and this hormone plays an important role in the process of leaf blade lobed formation.展开更多
Two genes (GhC4H1 and GhC4H2) that encode putative cotton cinnamate 4-hydroxylases that catalyze the second step in the phenylpropanoid pathway were isolated from developing cotton fibers. GhC4H1 and GhC4H2 each con...Two genes (GhC4H1 and GhC4H2) that encode putative cotton cinnamate 4-hydroxylases that catalyze the second step in the phenylpropanoid pathway were isolated from developing cotton fibers. GhC4H1 and GhC4H2 each contain open reading frames of 1 518 base pairs (bp) in length and both encode proteins consisting of 505 amino acid residues. They are 90.89% identical to each other at the amino acid sequence level and belong to class I of plant C4Hs. GhC4H1 and GhC4H2 genomic DNA are 2 247 and 2 161 bp long, respectively, and contain two introns located at conserved positions relative to the coding sequence. GhC4HI and GhC4H2 promoters were isolated and found to contain many cis-elements (boxes P, L and AC-1 element) previously identified in the promoters of other phenylpropanoid pathway genes. Histochemical staining showed GUS expression driven by the GhC4H1 and GhC4H2 promoters in ovules and fibers tissues. GhC4H1 and GhC4H2 were also widely expressed in other cotton tissues. GhC4H2 expression reached its highest level during the elongation stage of fiber development, whereas GhC4H1 expression increased during the secondary wall development period in cotton fibers. Our results contribute to a better understanding of the biochemical role of GhC4H1 and GhC4H2 in cotton fiber development.展开更多
Verticillium wilt, a devastating disease in cotton caused by Verticillium dahliae, reduces cotton quality and yield. Heterotrimeric GTP-binding proteins, consisting of Ga, Gb, and Gc subunits, transducers of receptor ...Verticillium wilt, a devastating disease in cotton caused by Verticillium dahliae, reduces cotton quality and yield. Heterotrimeric GTP-binding proteins, consisting of Ga, Gb, and Gc subunits, transducers of receptor signaling, function in a wide range of biological events. However, the function of Ga proteins in the regulation of defense responses in plants is largely unexplored, except for a few reports on model species. In the present study, a cotton G-protein a-subunit-encoding gene(GhGPA) was isolated from Verticillium wilt-resistant Gossypium hirsutum(upland cotton) cv. ND601. GhGPA transcription was up-regulated under V. dahliae stress, with higher expression in tolerant than in susceptible cotton cultivars.Subcellular localization revealed GhGPA to be located in the plasma membrane. GhGPA shows high(85.0%) identity with Arabidopsis AT2 G26300(AtGPA1), and AtGPA1 gpa1-4 mutants displayed susceptibility to V. dahliae. Ectopic expression of GhGPA successfully restored the resistance of Arabidopsis gpa1-4 mutants to Verticillium wilt and made them more resistant than the wild type. Overexpression of GhGPA in Arabidopsis markedly increased the resistance and resulted in dramatic up-regulation of pathogenesis-related(PR) genes and increased in H2 O2 accumulation and salicylic acid(SA) and jasmonic acid(JA) contents. However, suppressing GhGPA expression via virus-induced gene silencing(VIGS)increased susceptibility to Verticillium wilt, down-regulated the expression of PR and marker genes in SA and JA signaling pathways, and reduced H2 O2 content. The contents of SA and JA in Arabidopsis gpa1-4 and VIGS cotton were lower than those in the wild type and empty-vector control. However,GhGPA-overexpressing Arabidopsis contained more SA and JA than the wild type when inoculated with V. dahliae. Thus, GhGPA plays a vital role in Verticillium wilt resistance by inducing SA and JA signaling pathways and regulating the production of reactive oxygen species. These findings not only broaden our knowledge about the biological role of GhGPA, but also shed light on the defense mechanisms involving GhGPA against V. dahliae in cotton.展开更多
基金This work was financially supported by the National Natural Science Foundation of China[31960369]the Project for Crops Breeding of Shihezi University[YZZX201803]。
文摘Fatty Acyl-ACP thioesterase(FAT)is a key enzyme controlling oil biosynthesis in plant seeds.FATs can be divided into two subfamilies,FATA and FATB according to their amino acid sequences and substrate specificity.The Upland cotton genome contains 20 GhFAT genes,amongst which 6 genes were of the GhFATA subfamily and 14 of the GhFATB subfamily.The 20 GhFAT genes are unevenly distributed on 14 chromosomes.The GhFATA genes have 5 or 7 exons and the GhFATB genes have 6 or 7 exons.All GhFAT proteins have the conserved Acyl-ACP_TE domain and PLN02370 super family,the typical characteristics of plant thioesterases.Analyses of the expression level of GhFATs and the compositions of fatty acid in 5-60 days-post-anthesis seeds showed that the ratio of saturated fatty acids to unsaturated fatty acids was consistent with the expression profile of GhFATB12,GhFATB3,and GhFATB10;the ratio of monounsaturated fatty acid to polyunsaturated fatty acids was consistent with the expression profile of GhFATA3.The oil contents of mature cottonseeds were positively correlated with the contents of palmitic acid and linolenic acid as well as seed vigor.These results provide essential information for further exploring the role(s)of the specific GhFATs in determining oil biosynthesis and cottonseed compositions.
基金Supported by National Natural Science Foundation of China(31301682)the Agricultural Science Independent Innovation Foundation of Jiangsu Province[CX(14)5009]+1 种基金National Key Special Project for Breeding and Cultivation of GMO Varieties of China(2013ZX08005)the Jiangsu Province Science and Technology Support Program(BE2014389)~~
文摘[Objective] This study was conducted to clarify the biological information of PHYB genes in upland cotton (Gossypium hirsutum). [Method] Two PHYB genes were identified from the genome database of allotetraploid cotton (G. hirsutum L. acc. TM-1), and were found to be distributed on subgenomes A10 and D10. And then bioinformatic analysis on these two genes were performed. [Result] The PHYB genes of upland cotton had the same motifs and domains with the PHYB genes in other plant species, and even the number and location of the motifs and domains of these PHYB genes were consistent. The PHYB amino acid sequence alignment and the phylogenetic tree constructed based on PHYB amino acid sequence of these plant species indicated that the two PHYB genes in upland cotton had higher homology and closer evolutionary relationships with cocoa (Theobroma cacao), but lower similarity to PHYB genes in monocotyledonous plants, such as rice (Oryza saitva) and corn (Zea mays). The comparison of PHYB gene structure also revealed that plant PHYB gene was more conserved during evolution. The autophosphorylation of dozens of phosphorylation sites in upland cotton PHYB gene may be essential for the functions of phytochromes and plays a significant role in regulating phytochrome-mediated signal transduction pathways. [Conclusion] The results of this paper will provide a theoretical basis for the cloning and functional research of PHYB genes.
基金supported by the National Natural Science Foundation of China (31630051 and 31571606)the Jiangsu Collaborative Innovation Center for Modern Crop Production, China (JCIC-MCP)the earmarked fund for China Agriculture Research System (CARS-18-14)
文摘Sixteen cotton cultivars widely planted in China were sowed under five different drought concentrations(0,2.5,5,7.5,and 10%)using PEG6000 to screen the indices of drought resistance identification and explore the drought resistance of different cotton cultivars.Eighteen physiological indices including root,stem,and leaf water contents(RWC,SWC,and LWC),net photosynthetic rate(Pn),the maximum photochemical quantum yield(Fv/Fm),the actual photochemical quantum yield(ΦPSII),non-photochemical quenching coefficient(NPQ),leaf water potential(LWP),osmotic potential(Ψs),leaf relative conductivity(REC),leaf proline content(Pro),leaf and root soluble protein contents(LSPC and RSPC),leaf and root malondialdehyde(MDA)contents(LMDA and RMDA),root superoxide dismutase,peroxidase,and catalase activities(RSOD,RPOD,and RCAT)were measured.Results indicated the 18 physiological indices can be converted into five or six independent comprehensive indices by principal component analysis,and nine typical indices(Fv/Fm,SWC,LWP,Pro,LMDA,RSPC,RMDA,RSOD,and RCAT)screened out by a stepwise regression method could be utilized to evaluate the drought resistance.Moreover,the 16 cotton cultivars were divided into four types:drought sensitive,drought weak sensitive,moderate drought resistant,and drought resistant types.The resistance ability of two selected cotton cultivars(drought resistant cultivar,Dexiamian 1;drought sensitive cultivar,Yuzaomian 9110)with contrasting drought sensitivities were further verified by pot experiment.Results showed that the responses of final cotton biomass,yield,and yield composition to drought were significantly different between the two cultivars.In conclusion,drought resistant cultivar Dexiamian 1 and drought sensitive cultivar Yuzaomian 9110 were screened through hydroponics experiment,which can be used as ideal experimental materials to study the mechanism of different cotton cultivars with contrasting drought sensitivities in response to drought stress.
基金funded by the Professional (Agriculture) Researching Project for Public Benefit of Ministry of Agriculture,China (3-5)High-Yielding Promotion Project of Ministry of Agriculture,Chinathe National Industrial System Program of Modern Agriculture,China
文摘Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in 2008 and 2009 in 13 counties to determine if increased planting population density (PPD) would break the stagnant yield. The results showed that significant differences among the fields existed in theoretical yield, PPD, and bolls per square meter (BPM). The lowest yield of 1 641.1 kg ha-I was resulted from the lowest PPD of 1.7 plants m-2 and the lowest BPM of 71.8 bolls m-2, while the highest yield of 2 779.7 kg ha-~ was resulted from the highest PPD of 2.5 plants m-2, and the highest BPM of 129.4 bolls m-z. Plant mapping revealed that boll retention rate (BRR) was maintained over 30 or 40% for the first 17-18 fruiting branches (FBs) and decreased dramatically thereafter, rotten boll rate (RBR) decreased, but open boll rate (OBR) rose first and dropped later with rising FB from the bottom to the top. But BRR, RBR, and OBR were all dropped with the fruiting positions (FPs) extending outwards. The optimum range of plant density would be 2-3 plants m-2 and the proper individual plant structure would be 16-19 FBs with 5-7 FPs for cotton production in Hubei Province.
基金financial support from the National Key Research and Development Program of China (2018YFD1000900)Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP)Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and President (2016), China
文摘Fiber length of cotton(Gossypium hirsutum L.)decreases under drought stress,potassium(K)could diminish the decreased caused by drought,but the mechanism associated with this alleviation effect is not clear.We evaluated the effect of K on fiber elongation using two cotton cultivars,Simian 3 and Siza 3,grown in well-watered and drought-stressed conditions.Potassium fertilizer(K2O)was applied 0,150,or 300 kg ha?1 in each growing condition.Drought stress reduced the final fiber length due to a decline in the maximum rate of rapid elongation(Vmax,mmday?1).The application of K alleviated the droughtinduced fiber length reduction by increasing Vmax.At 10 and 15 days post-anthesis(DPA),drought significantly reduced osmotic potential(OP)and increased K+and malate contents at all K rates,relative to well-watered conditions,which was associated with increased activities of phosphoenolpyruvate carboxylase(PEPC),V-ATPase,PPase,and PM H+-ATPase in cotton fiber.However,the relative contribution of K+and malate to OP declined under drought in comparison with well-watered condition.Compared with control without K,K application decreased OP and increased the accumulation of osmolytes(K+,malate and soluble sugar)as well as the activities of related enzymes in fiber irrespective of water treatments.Moreover,K application increased osmotic adjustment during drought,and improved the contribution of K+and malate to OP,especially under drought stress.This study showed that drought decreased fiber length by reducing Vmax,and K application ameliorates the decline in fiber elongation due to drought by enhancing osmolytes accumulation and their contribution to OP in fiber cells.
基金support of the National Natural Science Foundation of China (U1203283)the National Key Technology R&D Program of China (2014BAD09B03)the Natural Science Foundation of Hebei (C2015301051)
文摘Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we had selected two cotton hybrids(Shiza 2,Xinluzao 43) and two conventional varieties(Xinluzao 13,Xinluzao 33) with different plant types in this experiment.We studied canopy characteristics and their correlation with photosynthesis in populations of different genotypes and plant types during yield formation in Xinjiang,China.Canopy characteristics including leaf area index(LAI),mean foliage tilt angle(MTA),canopy openness(DIFN),and chlorophyll relative content(SPAD).The results showed that LAI and SPAD peak values were higher and their peak values arrived later,and the adjustment capacity of MTA during the flowering and boll-forming stages was stronger in Xinluzao 43,with the normal-leaf,pagoda plant type,than these values in other varieties.DIFN of Xinluzao 43 remained between0.09 and 0.12 during the flowering and boll-forming stages,but was lower than that in the other varieties during the boll-opening stage.Thus,these characteristics of Xinluzao 43 were helpful for optimizing the light environment and maximizing light interception,thereby increasing photosynthetic capability.The photosynthetic rate and photosynthetic area were thus affected by cotton genotype as changes in the adjustment range of MTA,increases in peak values of LAI and SPAD,and extension of the functional stage of leaves.Available photosynthetic area and canopy light environment were affected by cotton plant type as changes in MTA and DIFN.Heterosis expression and plant type development were coordinated during different growth stages,the key to optimizing the canopy structure and further increasing yield.
文摘An improved protocol has been developed for somatic embryogenesis and plant regeneration of recalcitrant cotton cultivars. High callus frequencies and embryogenic tissue were developed in MSB medium supplemented with gradient concentrations of KT and 2,4-D, their concentration decreasing from 0.1 to 0.01 mg·L^-1. Somatic embryos were successfully incubated in 1/2 macronutrient MSB suspension supplemented with 0.5 g· L^-1 glutamine and 0.5 g·L^-1 asparagine. Decrease in macronutrient concentration of MSB significantly alleviated browning and was beneficial to suspension cells. Transformation of somatic embryos into plants was induced in MSB medium supplemented with 3% sucrose, 0.5 g·L^-1 glutamine, 0.5 g·L^-1 asparagine, and 6.0 g·L^-1 agar. The effect of sucrose as carbohydrate was better than that of glucose for plant germination. Using this protocol, regenerated plantlets from the CCRI521 and Zhongzhi86-6 reached to as much as 19.6 and 18.5% somatic embryos, respectively.
基金supported by the Genetically Modified Organisms Breeding Major Projects,China (2016ZX0800 5004, 2016ZX08009003-003-004)the National Natural Science Foundation of China (31601349)the Innovation Program of Chinese Academy of Agricultural Sciences
文摘Leaf is a essential part of the plants for photosynthetic activities which mainly economize the resources for boll heath. Significant variations of leaf shapes across the Gossypium sp. considerably influence the infiltration of sunlight for photosynthesis. To understand the genetic variants and molecular processes underlying for cotton leaf shape, we used F2 population derived from upland cotton genotype P30A (shallow-lobed leaf) and sea-island cotton genotype ISR (deep-lobed leaf) to map leaf deep lobed phenotype controlling genes LBL1 and LBL2. Genetic analysis and localization results have unmasked the position and interaction between both loci of LBL1 and LBL2, and revealed the co-dominance impact of the genes in regulating depth of leaf blades lobes in cotton. LBL1 had been described as a main gene and member of transcription factor family leucine zipper (HD-ZIPI) from a class I homologous domain factor Gorai.OO2G244000. The qRT-PCR results elaborated the continuous change in expression level of LBL1 at different growth stages and leaf parts of cotton. Higher expression level was observed in mature large leaves followed by medium and young leaves respectively. For further confirmation, plants were tested from hormonal induction treatments, which explained that LBL 1 expression was influenced by hormonal signaling. Moreover, the highest expression level was detected in brassinolides (BR) treatment as compared to other hormones, and this hormone plays an important role in the process of leaf blade lobed formation.
基金funded by the National Natural Science Foundation of China(31060173)the Joint Funds of the National Natural Science Foundation of China(U1178305)the High-Tech R&D Program of Xinjiang,China(201111116)
文摘Two genes (GhC4H1 and GhC4H2) that encode putative cotton cinnamate 4-hydroxylases that catalyze the second step in the phenylpropanoid pathway were isolated from developing cotton fibers. GhC4H1 and GhC4H2 each contain open reading frames of 1 518 base pairs (bp) in length and both encode proteins consisting of 505 amino acid residues. They are 90.89% identical to each other at the amino acid sequence level and belong to class I of plant C4Hs. GhC4H1 and GhC4H2 genomic DNA are 2 247 and 2 161 bp long, respectively, and contain two introns located at conserved positions relative to the coding sequence. GhC4HI and GhC4H2 promoters were isolated and found to contain many cis-elements (boxes P, L and AC-1 element) previously identified in the promoters of other phenylpropanoid pathway genes. Histochemical staining showed GUS expression driven by the GhC4H1 and GhC4H2 promoters in ovules and fibers tissues. GhC4H1 and GhC4H2 were also widely expressed in other cotton tissues. GhC4H2 expression reached its highest level during the elongation stage of fiber development, whereas GhC4H1 expression increased during the secondary wall development period in cotton fibers. Our results contribute to a better understanding of the biochemical role of GhC4H1 and GhC4H2 in cotton fiber development.
基金supported by the National Key Research and Development Program of China(2016YFD0101006)the China Agricultural Research System(CARS15-03)the Outstanding Youth Found of Hebei Province(C2019204365)。
文摘Verticillium wilt, a devastating disease in cotton caused by Verticillium dahliae, reduces cotton quality and yield. Heterotrimeric GTP-binding proteins, consisting of Ga, Gb, and Gc subunits, transducers of receptor signaling, function in a wide range of biological events. However, the function of Ga proteins in the regulation of defense responses in plants is largely unexplored, except for a few reports on model species. In the present study, a cotton G-protein a-subunit-encoding gene(GhGPA) was isolated from Verticillium wilt-resistant Gossypium hirsutum(upland cotton) cv. ND601. GhGPA transcription was up-regulated under V. dahliae stress, with higher expression in tolerant than in susceptible cotton cultivars.Subcellular localization revealed GhGPA to be located in the plasma membrane. GhGPA shows high(85.0%) identity with Arabidopsis AT2 G26300(AtGPA1), and AtGPA1 gpa1-4 mutants displayed susceptibility to V. dahliae. Ectopic expression of GhGPA successfully restored the resistance of Arabidopsis gpa1-4 mutants to Verticillium wilt and made them more resistant than the wild type. Overexpression of GhGPA in Arabidopsis markedly increased the resistance and resulted in dramatic up-regulation of pathogenesis-related(PR) genes and increased in H2 O2 accumulation and salicylic acid(SA) and jasmonic acid(JA) contents. However, suppressing GhGPA expression via virus-induced gene silencing(VIGS)increased susceptibility to Verticillium wilt, down-regulated the expression of PR and marker genes in SA and JA signaling pathways, and reduced H2 O2 content. The contents of SA and JA in Arabidopsis gpa1-4 and VIGS cotton were lower than those in the wild type and empty-vector control. However,GhGPA-overexpressing Arabidopsis contained more SA and JA than the wild type when inoculated with V. dahliae. Thus, GhGPA plays a vital role in Verticillium wilt resistance by inducing SA and JA signaling pathways and regulating the production of reactive oxygen species. These findings not only broaden our knowledge about the biological role of GhGPA, but also shed light on the defense mechanisms involving GhGPA against V. dahliae in cotton.