For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the...For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.展开更多
Advancements are reported in computer-generated holography proofing RGB 4K display through a new strategy based on diffraction model-driven deep networks. In the new 4K-DMDNet, the network is not a “black box” anymo...Advancements are reported in computer-generated holography proofing RGB 4K display through a new strategy based on diffraction model-driven deep networks. In the new 4K-DMDNet, the network is not a “black box” anymore. Rather, the input-output relation must obey to the physics of wavefront propagation, which is embedded here as a constraint. Thus, a labelled dataset is not required, and the model shows superior generalization capabilities with respect to data-driven approaches. The method is promising for the new generation of RGB 4K holographic display, as well as augmented and virtual reality systems.展开更多
Zinc ion batteries are considered as potential energy storage devices due to their advantages of low-cost,high-safety,and high theoretical capacity.However,dendrite growth and chemical corrosion occurring on Zn anode ...Zinc ion batteries are considered as potential energy storage devices due to their advantages of low-cost,high-safety,and high theoretical capacity.However,dendrite growth and chemical corrosion occurring on Zn anode limit their commercialization.These problems can be tackled through the optimization of the electrolyte.However,the screening of electrolyte additives using normal electrochemical methods is time-consuming and labor-intensive.Herein,a fast and simple method based on the digital holography is developed.It can realize the in situ monitoring of electrode/electrolyte interface and provide direct information concerning ion concentration evolution of the diffusion layer.It is effective and time-saving in estimating the homogeneity of the deposition layer and predicting the tendency of dendrite growth,thus able to value the applicability of electrolyte additives.The feasibility of this method is further validated by the forecast and evaluation of thioacetamide additive.Based on systematic characterization,it is proved that the introduction of thioacetamide can not only regulate the interficial ion flux to induce dendrite-free Zn deposition,but also construct adsorption molecule layers to inhibit side reactions of Zn anode.Being easy to operate,capable of in situ observation,and able to endure harsh conditions,digital holography method will be a promising approach for the interfacial investigation of other battery systems.展开更多
Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the ...Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system.展开更多
Holographic multiple-input multiple-output(HMIMO)has become an emerging technology for achieving ultra-high frequency spectral efficiency and spatial resolution in future wireless systems.The increasing antenna apertu...Holographic multiple-input multiple-output(HMIMO)has become an emerging technology for achieving ultra-high frequency spectral efficiency and spatial resolution in future wireless systems.The increasing antenna aperture leads to a more significant characterization of the spherical wavefront in near-field communications in HMIMO scenarios.Beam training as a key technique for wireless communication is worth exploring in this near-field scenario.Compared with the widely researched far-field beam training,the increased dimensionality of the search space for near-field beam training poses a challenge to the complexity and accuracy of the proposed algorithm.In this paper,we introduce several typical near-field beam training methods:exhaustive beam training,hierarchical beam training,and multi-beam training that includes equal interval multi-beam training and hash multi-beam training.The performances of these methods are compared through simulation analysis,and their effectiveness is verified on the hardware testbed as well.Additionally,we provide application scenarios,research challenges,and potential future research directions for near-field beam training.展开更多
This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem....This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem. Such a solution does not appear to be achievable in cosmological models which do not integrate black hole formulae with quantum formulae such as the Stephan-Boltzmann law. As demonstrated herein, assuming a constant value of Lambda over the great span of cosmic time appears to have been a mistake. It appears that Einstein’s assumption of a constant, in terms of vacuum energy density, was not only a mistake for a statically-balanced universe, but also a mistake for a dynamically-expanding universe.展开更多
Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography...Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.展开更多
To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is nece...To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is necessary during data readout in HDS.In this study,we proposed a complex amplitude demodulation method based on deep learning from a single-shot diffraction intensity image and verified it by a non-interferometric lensless experiment demodulating four-level amplitude and four-level phase.By analyzing the correlation between the diffraction intensity features and the amplitude and phase encoding data pages,the inverse problem was decomposed into two backward operators denoted by two convolutional neural networks(CNNs)to demodulate amplitude and phase respectively.The experimental system is simple,stable,and robust,and it only needs a single diffraction image to realize the direct demodulation of both amplitude and phase.To our investigation,this is the first time in HDS that multilevel complex amplitude demodulation is achieved experimentally from one diffraction intensity image without iterations.展开更多
1.The need to develop a holographic digital mannequin Life processes,including high intelligence,self-organization,and homeostasis,are characterized by the biological organism in the form of self-renewal,self-replicat...1.The need to develop a holographic digital mannequin Life processes,including high intelligence,self-organization,and homeostasis,are characterized by the biological organism in the form of self-renewal,self-replication and self-regulation,metabolism,self-repair,and self-reproduction,which are all processes of multisystem coordinated movement[1].Research in the field of life sciences is not limited to the use of advanced observational methods to reveal microscopic structures at the subcellular or molecular level.Discoveries based on these methods alone cannot characterize the dynamic processes of life at the microscopic and molecular level[2].展开更多
We study dynamical holographic systems and the relation between thermodynamical and dynamical stability of such systems,using the conserved currents in the bulk spacetime.In particular,in the probe limit a generalized...We study dynamical holographic systems and the relation between thermodynamical and dynamical stability of such systems,using the conserved currents in the bulk spacetime.In particular,in the probe limit a generalized free energy is defined with the property of monotonic decreasing in dynamic processes.It is then shown that the(absolute)thermodynamical stability implies the dynamical stability,while the linear dynamical stability implies the thermodynamical(meta-)stability.The holographic superfluid is taken as an example to illustrate our general formalism,where the dynamic evolution of the system in contact with a particle source is clarified by theoretical investigation and numerical verification.The case going beyond the probe limit is also discussed.展开更多
In their recently published paper in Opto-Electronic Ad-vances,Pietro Ferraro and his colleagues report on a new high-throughput tomographic phase instrument that precisely quantifies intracellular lipid droplets(LDs)...In their recently published paper in Opto-Electronic Ad-vances,Pietro Ferraro and his colleagues report on a new high-throughput tomographic phase instrument that precisely quantifies intracellular lipid droplets(LDs)1.LDs are lipid storage organelles found in most cell types and play an active role in critical biological pro-cesses,including energy metabolism,membrane homeo-stasis.展开更多
Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is ...Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is to establish holographic alloy positioning design (HAPD) system, of which the base consists of measurement and calculation center, SMMS center, AGE center, HAPD information center and HAPD cybernation center; Second, the resonance activating-sychro alternating mechanism of atom movement may be divided into the located and oriented diffuse modes; Third, the equilibrium and subequilibrium holographic network phase diagrams are blueprints and operable platform for researchers to discover, design, manufacture and deploy advanced alloys, which are obtained respectively by the equilibrium lever numerical method and cross point numerical method of isothermal Gibbs energy curves. As clicking each network point, the holographic information of three structure levels for the designed alloy may be readily obtained: the phase constitution and fraction, phase arranging structure and properties of organization; the composition, alloy gene arranging structure and properties of each phase and the electronic structures and properties of alloy genes. It will create a new era for network designing advanced alloys.展开更多
Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing exp...Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.展开更多
Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that...Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.展开更多
A phase-shifting digital holography scheme developed to investigate internal defects in artworks is described. Phase-shifting is utilized to obtain a clear reconstructed object wave from a rough surface texture. A rev...A phase-shifting digital holography scheme developed to investigate internal defects in artworks is described. Phase-shifting is utilized to obtain a clear reconstructed object wave from a rough surface texture. A reverse-transform algorithm is employed to reconstruct the object wave on its original position of unknown distance or the imaging position from the object wave information on the holographic plane. To get the clearest reconstruction the exact registration of the unknown distance is determined by applying the intensity sum as the auto-focusing function, The spatial resolution of the reconstruction image is also investigated for a variety of affecting factors. Laboratory results of reconstruction images under deformation are presented.展开更多
We investigate how the splicing mode of a holographic element(hogel)affects the reconstruction of a 3 D scene to improve the reconstruction resolution of a holographic stereogram fabricated using the effective perspec...We investigate how the splicing mode of a holographic element(hogel)affects the reconstruction of a 3 D scene to improve the reconstruction resolution of a holographic stereogram fabricated using the effective perspective image segmentation and mosaicking method(EPISM).First,the effect of hogel spatial multiplexing on holographic recording and reconstruction is studied based on the mechanism of recording interference fringes in the holographic recording medium.Second,combined with the influence of multiple exposures on the hologram's diffraction efficiency,the diffraction efficiency of the holographic stereogram is analyzed in the spatial multiplexing mode.The holographic stereogram is then regarded as a special optical imaging system.The theory of spatial bandwidth product is adopted to describe the comprehensive resolution of the holographic stereogram,which explains why hogel spatial multiplexing can significantly improve the reconstruction resolution of a holographic stereogram.Compared with the traditional printing method under the same parameters in optical experiments,hogel spatial multiplexing has a lower diffraction efficiency but a higher quality of reconstructed image,consistent with the theoretical analysis.展开更多
A new fabricating method is demonstrated to realize two different Bragg gratings in an identical chip using traditional holographic exposure. Polyimide is used to protect one Bragg grating during the first period. The...A new fabricating method is demonstrated to realize two different Bragg gratings in an identical chip using traditional holographic exposure. Polyimide is used to protect one Bragg grating during the first period. The technical process of this method is as simple as that of standard holographic exposure.展开更多
By using the beat frequency technique,the dual-wavelength digital holography(DWDH)can greatly increase the measurement range of the system.However,the beat frequency technique has a limitation in measurement range.The...By using the beat frequency technique,the dual-wavelength digital holography(DWDH)can greatly increase the measurement range of the system.However,the beat frequency technique has a limitation in measurement range.The measurement range is not larger than a synthetic wavelength.Here,to break through this limitation,we propose a novel DWDH method based on the constrained underdetermined equations,which consists of three parts:(i)prove that the constrained underdetermined equation has a unique integer solution,(ii)design an algorithm to search for the unique integer solution,(iii)introduce a third wavelength into the DWDH system,and design a corresponding algorithm to enhance the anti-noise performance of DWDH.As far as we know,it is the first time that we have discovered that the problem of DWDH can belong in a problem of contained underdetermined equations,and it is also the first time that we have given the mathematical proof for breaking through the limitation of the measurement range.A series of results is shown to test the theory and the corresponding algorithms.More importantly,since the principle of proposed DWDH is based on basic mathematical principles,it can be further extended to various fields,such as dual-wavelength microwave imaging and dual-wavelength coherent diffraction imaging.展开更多
In the era of information explosion,the demand of data storage is increased dramatically.Holographic data storage technology is one of the most promising next-generation data storage technologies due to its high stora...In the era of information explosion,the demand of data storage is increased dramatically.Holographic data storage technology is one of the most promising next-generation data storage technologies due to its high storage density,fast data transfer rate,long data life time and less energy consumption.Collinear holographic data storage technology is the typical solution of the holographic data storage technology which owns a more compact,compatible and practical system.This paper gives a brief review of holographic data storage,introduces collinear holographic data storage technology and discusses phase modulation technology being used in the holographic data storage system to achieve higher storage density and higher data transfer rate.展开更多
Based on the holographic theory, a pair of reflective holographic lenses have been utilized with an aim to improve the optical properties of night vision goggles. The aberration distribution of the holographic lens ha...Based on the holographic theory, a pair of reflective holographic lenses have been utilized with an aim to improve the optical properties of night vision goggles. The aberration distribution of the holographic lens has been confirmed by experiments and compensated by a conventional symmetrical spherical system. Resulting data of the whole optical system are given.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)。
文摘For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.
文摘Advancements are reported in computer-generated holography proofing RGB 4K display through a new strategy based on diffraction model-driven deep networks. In the new 4K-DMDNet, the network is not a “black box” anymore. Rather, the input-output relation must obey to the physics of wavefront propagation, which is embedded here as a constraint. Thus, a labelled dataset is not required, and the model shows superior generalization capabilities with respect to data-driven approaches. The method is promising for the new generation of RGB 4K holographic display, as well as augmented and virtual reality systems.
基金supported by the National Natural Science Foundation of China(No.22075115)Natural Science Foundation of Jiangsu Province(No.BK20211352)+2 种基金Joint Funds of the National Natural Science Foundation of China(No.U2141201)Natural Science Foundation(No.22KJA430005)of Jiangsu Education Committee of ChinaPostgraduate Research and Practice Innovation Program of Jiangsu Normal University(No.2021XKT0296).
文摘Zinc ion batteries are considered as potential energy storage devices due to their advantages of low-cost,high-safety,and high theoretical capacity.However,dendrite growth and chemical corrosion occurring on Zn anode limit their commercialization.These problems can be tackled through the optimization of the electrolyte.However,the screening of electrolyte additives using normal electrochemical methods is time-consuming and labor-intensive.Herein,a fast and simple method based on the digital holography is developed.It can realize the in situ monitoring of electrode/electrolyte interface and provide direct information concerning ion concentration evolution of the diffusion layer.It is effective and time-saving in estimating the homogeneity of the deposition layer and predicting the tendency of dendrite growth,thus able to value the applicability of electrolyte additives.The feasibility of this method is further validated by the forecast and evaluation of thioacetamide additive.Based on systematic characterization,it is proved that the introduction of thioacetamide can not only regulate the interficial ion flux to induce dendrite-free Zn deposition,but also construct adsorption molecule layers to inhibit side reactions of Zn anode.Being easy to operate,capable of in situ observation,and able to endure harsh conditions,digital holography method will be a promising approach for the interfacial investigation of other battery systems.
基金supported in part by National Key Research and Develop⁃ment Program of China under Grant No.2020YFB1807600.
文摘Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system.
文摘Holographic multiple-input multiple-output(HMIMO)has become an emerging technology for achieving ultra-high frequency spectral efficiency and spatial resolution in future wireless systems.The increasing antenna aperture leads to a more significant characterization of the spherical wavefront in near-field communications in HMIMO scenarios.Beam training as a key technique for wireless communication is worth exploring in this near-field scenario.Compared with the widely researched far-field beam training,the increased dimensionality of the search space for near-field beam training poses a challenge to the complexity and accuracy of the proposed algorithm.In this paper,we introduce several typical near-field beam training methods:exhaustive beam training,hierarchical beam training,and multi-beam training that includes equal interval multi-beam training and hash multi-beam training.The performances of these methods are compared through simulation analysis,and their effectiveness is verified on the hardware testbed as well.Additionally,we provide application scenarios,research challenges,and potential future research directions for near-field beam training.
文摘This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem. Such a solution does not appear to be achievable in cosmological models which do not integrate black hole formulae with quantum formulae such as the Stephan-Boltzmann law. As demonstrated herein, assuming a constant value of Lambda over the great span of cosmic time appears to have been a mistake. It appears that Einstein’s assumption of a constant, in terms of vacuum energy density, was not only a mistake for a statically-balanced universe, but also a mistake for a dynamically-expanding universe.
基金supported by the National Science and Technology Major Project(No.2011ZX05020-006)
文摘Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.
基金We are grateful for financial supports from National Key Research and Development Program of China(2018YFA0701800)Project of Fujian Province Major Science and Technology(2020HZ01012)+1 种基金Natural Science Foundation of Fujian Province(2021J01160)National Natural Science Foundation of China(62061136005).
文摘To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is necessary during data readout in HDS.In this study,we proposed a complex amplitude demodulation method based on deep learning from a single-shot diffraction intensity image and verified it by a non-interferometric lensless experiment demodulating four-level amplitude and four-level phase.By analyzing the correlation between the diffraction intensity features and the amplitude and phase encoding data pages,the inverse problem was decomposed into two backward operators denoted by two convolutional neural networks(CNNs)to demodulate amplitude and phase respectively.The experimental system is simple,stable,and robust,and it only needs a single diffraction image to realize the direct demodulation of both amplitude and phase.To our investigation,this is the first time in HDS that multilevel complex amplitude demodulation is achieved experimentally from one diffraction intensity image without iterations.
基金supported by the National Natural Science Foundation of China(82293651)the CAMS Innovation Fund for Medical Sciences(2019-I2M-5-055)the Guangdong Provincial Key Laboratory of Brain Connectome and Behavior(2017B030301017).
文摘1.The need to develop a holographic digital mannequin Life processes,including high intelligence,self-organization,and homeostasis,are characterized by the biological organism in the form of self-renewal,self-replication and self-regulation,metabolism,self-repair,and self-reproduction,which are all processes of multisystem coordinated movement[1].Research in the field of life sciences is not limited to the use of advanced observational methods to reveal microscopic structures at the subcellular or molecular level.Discoveries based on these methods alone cannot characterize the dynamic processes of life at the microscopic and molecular level[2].
基金partially supported by the National Natural Science Foundation of China(Grant Nos.11975235,12035016,12075026,12275350)supported in part by the Belgian Federal Science Policy Office through the Interuniversity Attraction Pole P7/37+2 种基金FWO-Vlaanderen(Grant No.G020714N)the Vrije Universiteit Brussel through the Strategic Research Program“High-Energy Physics”an individual FWO fellow supported(Grant No.12G3515N)。
文摘We study dynamical holographic systems and the relation between thermodynamical and dynamical stability of such systems,using the conserved currents in the bulk spacetime.In particular,in the probe limit a generalized free energy is defined with the property of monotonic decreasing in dynamic processes.It is then shown that the(absolute)thermodynamical stability implies the dynamical stability,while the linear dynamical stability implies the thermodynamical(meta-)stability.The holographic superfluid is taken as an example to illustrate our general formalism,where the dynamic evolution of the system in contact with a particle source is clarified by theoretical investigation and numerical verification.The case going beyond the probe limit is also discussed.
文摘In their recently published paper in Opto-Electronic Ad-vances,Pietro Ferraro and his colleagues report on a new high-throughput tomographic phase instrument that precisely quantifies intracellular lipid droplets(LDs)1.LDs are lipid storage organelles found in most cell types and play an active role in critical biological pro-cesses,including energy metabolism,membrane homeo-stasis.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is to establish holographic alloy positioning design (HAPD) system, of which the base consists of measurement and calculation center, SMMS center, AGE center, HAPD information center and HAPD cybernation center; Second, the resonance activating-sychro alternating mechanism of atom movement may be divided into the located and oriented diffuse modes; Third, the equilibrium and subequilibrium holographic network phase diagrams are blueprints and operable platform for researchers to discover, design, manufacture and deploy advanced alloys, which are obtained respectively by the equilibrium lever numerical method and cross point numerical method of isothermal Gibbs energy curves. As clicking each network point, the holographic information of three structure levels for the designed alloy may be readily obtained: the phase constitution and fraction, phase arranging structure and properties of organization; the composition, alloy gene arranging structure and properties of each phase and the electronic structures and properties of alloy genes. It will create a new era for network designing advanced alloys.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.
文摘A phase-shifting digital holography scheme developed to investigate internal defects in artworks is described. Phase-shifting is utilized to obtain a clear reconstructed object wave from a rough surface texture. A reverse-transform algorithm is employed to reconstruct the object wave on its original position of unknown distance or the imaging position from the object wave information on the holographic plane. To get the clearest reconstruction the exact registration of the unknown distance is determined by applying the intensity sum as the auto-focusing function, The spatial resolution of the reconstruction image is also investigated for a variety of affecting factors. Laboratory results of reconstruction images under deformation are presented.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFB1104500)the National Natural Science Foundation of China(Grant No.61775240)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201432)。
文摘We investigate how the splicing mode of a holographic element(hogel)affects the reconstruction of a 3 D scene to improve the reconstruction resolution of a holographic stereogram fabricated using the effective perspective image segmentation and mosaicking method(EPISM).First,the effect of hogel spatial multiplexing on holographic recording and reconstruction is studied based on the mechanism of recording interference fringes in the holographic recording medium.Second,combined with the influence of multiple exposures on the hologram's diffraction efficiency,the diffraction efficiency of the holographic stereogram is analyzed in the spatial multiplexing mode.The holographic stereogram is then regarded as a special optical imaging system.The theory of spatial bandwidth product is adopted to describe the comprehensive resolution of the holographic stereogram,which explains why hogel spatial multiplexing can significantly improve the reconstruction resolution of a holographic stereogram.Compared with the traditional printing method under the same parameters in optical experiments,hogel spatial multiplexing has a lower diffraction efficiency but a higher quality of reconstructed image,consistent with the theoretical analysis.
文摘A new fabricating method is demonstrated to realize two different Bragg gratings in an identical chip using traditional holographic exposure. Polyimide is used to protect one Bragg grating during the first period. The technical process of this method is as simple as that of standard holographic exposure.
基金Project supported by the Foundation of Science and Technology Department of Shaanxi Province,China(Grant No.2018JQ6009)the Foundation of Education Department of Shaanxi Province,China(Grant No.17JK1165)+4 种基金the Beijing Natural Science Foundation,China(Grant No.Z190004)the National Natural Science Foundation of China(Grant No.61575197)the Innovation Capability Improvement Plan,Hebei Province,China(Grant No.20540302D)the Fundamental Research Funds for the Central Universities,China,the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2017489)the Natural Science Foundation of Hebei Province,China(Grant No.F2018402285).
文摘By using the beat frequency technique,the dual-wavelength digital holography(DWDH)can greatly increase the measurement range of the system.However,the beat frequency technique has a limitation in measurement range.The measurement range is not larger than a synthetic wavelength.Here,to break through this limitation,we propose a novel DWDH method based on the constrained underdetermined equations,which consists of three parts:(i)prove that the constrained underdetermined equation has a unique integer solution,(ii)design an algorithm to search for the unique integer solution,(iii)introduce a third wavelength into the DWDH system,and design a corresponding algorithm to enhance the anti-noise performance of DWDH.As far as we know,it is the first time that we have discovered that the problem of DWDH can belong in a problem of contained underdetermined equations,and it is also the first time that we have given the mathematical proof for breaking through the limitation of the measurement range.A series of results is shown to test the theory and the corresponding algorithms.More importantly,since the principle of proposed DWDH is based on basic mathematical principles,it can be further extended to various fields,such as dual-wavelength microwave imaging and dual-wavelength coherent diffraction imaging.
基金We are grateful for financial supports from National Key R&D Program of China(2018YFA0701800)National Natural Science Foundation of China(Grant No.61475019).
文摘In the era of information explosion,the demand of data storage is increased dramatically.Holographic data storage technology is one of the most promising next-generation data storage technologies due to its high storage density,fast data transfer rate,long data life time and less energy consumption.Collinear holographic data storage technology is the typical solution of the holographic data storage technology which owns a more compact,compatible and practical system.This paper gives a brief review of holographic data storage,introduces collinear holographic data storage technology and discusses phase modulation technology being used in the holographic data storage system to achieve higher storage density and higher data transfer rate.
文摘Based on the holographic theory, a pair of reflective holographic lenses have been utilized with an aim to improve the optical properties of night vision goggles. The aberration distribution of the holographic lens has been confirmed by experiments and compensated by a conventional symmetrical spherical system. Resulting data of the whole optical system are given.