To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA...To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.展开更多
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai...The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.展开更多
Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates...Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates constraints and objectives generated through human-computer interaction.This approach ensures that the model is aligned with practical requirements and daily operational tasks while facilitating iterative train rescheduling.The dispatcher’s empirical knowledge is integrated into the train rescheduling process using a human-computer interaction framework.We introduce six interfaces to dynamically construct constraints and objectives that capture human intentions.By summarizing rescheduling rules,we devise a rule-based conflict detection-resolution heuristic algorithm to effectively solve the formulated model.A series of numerical experiments are presented,demonstrating strong performance across the entire system.Furthermore,theflexibility of rescheduling is enhanced through secondary analysis-driven solutions derived from the outcomes of humancomputer interactions in the previous step.This proposed interaction method complements existing literature on rescheduling methods involving human-computer interactions.It serves as a tool to aid dispatchers in identifying more feasible solutions in accordance with their empirical rescheduling strategies.展开更多
With the popularity of new intelligent mobile devices in people’s lives,the development of mobile applications has paid increasing attention to the interactive experience of users.As the content of traditional Human-...With the popularity of new intelligent mobile devices in people’s lives,the development of mobile applications has paid increasing attention to the interactive experience of users.As the content of traditional Human-Computer Interaction(HCI)course and teaching material is out of date,it cannot meet the needs of mobile application interaction design and enterprises for students.Therefore,we need a new generation HCI course based on intelligent mobile devices to study the relationship between users and systems.The HCI course not only teaches students HCI theory and model,but also needs to cultivate students’interaction-oriented design practical ability.This paper proposes a set of HCI teaching material design and teaching methods for improving HCI class quality on mobile application interaction design,so as to make students more suitable for the employment requirements of enterprises.展开更多
Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide...Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.展开更多
Triboelectric nanogenerator(TENG)converts mechanical energy into valuable electrical energy,offering a solution for future energy needs.As an indispensable part of TENG,textile TENG(T-TENG)has incredible advantages in...Triboelectric nanogenerator(TENG)converts mechanical energy into valuable electrical energy,offering a solution for future energy needs.As an indispensable part of TENG,textile TENG(T-TENG)has incredible advantages in harvesting biomechanical energy and physiological signal monitoring.However,the application of T-TENG is restricted,partly because the fabric structure parameter and structure on T-TENG performance have not been fully exploited.This study comprehensively investigates the effect of weaving structure on fabric TENGs(F-TENGs)for direct-weaving yarn TENGs and post-coating fabric TENGs.For direct-weaving F-TENGs,a single-yarn TENG(Y-TENG)with a core-sheath structure is fabricated using conductive yarn as the core layer yarn and polytetrafluoroethylene(PTFE)filaments as the sheath yarn.Twelve fabrics with five different sets of parameters were designed and investigated.For post-coating F-TENGs,fabrics with weaving structures of plain,twill,satin,and reinforced twill were fabricated and coated with conductive silver paint.Overall,the twill F-TENGs have the best electrical outputs,followed by the satin F-TENGs and plain weave F-TENGs.Besides,the increase of the Y-TENG gap spacing was demonstrated to improve the electrical output performance.Moreover,T-TENGs are demonstrated for human-computer interaction and self-powered real-time monitoring.This systematic work provides guidance for the future T-TENG’s design.展开更多
To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. ...To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. Different soft tissues are modeled by changing the width, number of pieces, thickness, and length of a single plate spring. In this paper, the structural design, calcula- tion of soft tissue deformation and real-time feedback operations of our system are also introduced. To evaluate the feasibility of the system and validate the model, an experimental system of haptic in- teraction, in which users can use virtual hands to pull virtual brain tissues, is built using PHANTOM OMNI devices. Experimental results show that the proposed system is stable, accurate and promising for modeling instantaneous soft tissue deformation.展开更多
In this paper,we present an RFID based human and Unmanned Aerial Vehicle(UAV)Interaction system,termed RFHUI,to provide an intuitive and easy-to-operate method to navigate a UAV in an indoor environment.It relies on t...In this paper,we present an RFID based human and Unmanned Aerial Vehicle(UAV)Interaction system,termed RFHUI,to provide an intuitive and easy-to-operate method to navigate a UAV in an indoor environment.It relies on the passive Radio-Frequency IDentification(RFID)technology to precisely track the pose of a handheld controller,and then transfer the pose information to navigate the UAV.A prototype of the handheld controller is created by attaching three or more Ultra High Frequency(UHF)RFID tags to a board.A Commercial Off-The-Shelf(COTS)RFID reader with multiple antennas is deployed to collect the observations of the tags.First,the precise positions of all the tags can be obtained by our proposed method,which leverages a Bayesian filter and Channel State Information(CSI)phase measurements collected from the RFID reader.Second,we introduce a Singular Value Decomposition(SVD)based approach to obtain a 6-DoF(Degrees of Freedom)pose of the controller from estimated positions of the tags.Furthermore,the pose of the controller can be precisely tracked in a real-time manner,while the user moves the controller.Finally,control commands will be generated from the controller's pose and sent to the UAV for navigation.The performance of the RFHUI is evaluated by several experiments.The results show that it provides precise poses with 0.045m mean error in position and 2.5∘mean error in orientation for the controller,and enables the controller to precisely and intuitively navigate the UAV in an indoor environment.展开更多
In this paper,we investigate methodologies to improve direct-touch interaction on invisible and intangible spatial input.We firstly discuss about the motive of looking for a new input method for whole body interaction...In this paper,we investigate methodologies to improve direct-touch interaction on invisible and intangible spatial input.We firstly discuss about the motive of looking for a new input method for whole body interaction and how it can be meaningful.We also describe the role that can play spatial interaction to improve the freedom of interaction for a user.We propose a method of spatial centered interaction using invisible and intangible spatial inputs.However,given their lack of tactile feedback and visual representation,direct touch interaction on such input can be confused.In order to make a step toward understanding causes and solutions for such phenomena,we made 2 user experiments.In the first one,we test 5 setups of helper that provide information of the location of the input by constraining the dimension it is located at.The results show that using marker on the ground and a relationship with the height of the user’s body improve significantly the locative task.In the second experiment,we create a dancing game using invisible and intangible spatial inputs and we stress the results obtained in the first experiment within this cognitively demanding context.Results show that the same setup of helper is still providing very good results in that context.展开更多
Gaze estimation is one of the most promising technologies for supporting indoor monitoring and interaction systems.However,previous gaze estimation techniques generally work only in a controlled laboratory environment...Gaze estimation is one of the most promising technologies for supporting indoor monitoring and interaction systems.However,previous gaze estimation techniques generally work only in a controlled laboratory environment because they require a number of high-resolution eye images.This makes them unsuitable for welfare and healthcare facilities with the following challenging characteristics:1)users’continuous movements,2)various lighting conditions,and 3)a limited amount of available data.To address these issues,we introduce a multi-view multi-modal head-gaze estimation system that translates the user’s head orientation into the gaze direction.The proposed system captures the user using multiple cameras with depth and infrared modalities to train more robust gaze estimators under the aforementioned conditions.To this end,we implemented a deep learning pipeline that can handle different types and combinations of data.The proposed system was evaluated using the data collected from 10 volunteer participants to analyze how the use of single/multiple cameras and modalities affect the performance of head-gaze estimators.Through various experiments,we found that 1)an infrared-modality provides more useful features than a depth-modality,2)multi-view multi-modal approaches provide better accuracy than singleview single-modal approaches,and 3)the proposed estimators achieve a high inference efficiency that can be used in real-time applications.展开更多
Artificial entities,such as virtual agents,have become more pervasive.Their long-term presence among humans requires the virtual agent’s ability to express appropriate emotions to elicit the necessary empathy from th...Artificial entities,such as virtual agents,have become more pervasive.Their long-term presence among humans requires the virtual agent’s ability to express appropriate emotions to elicit the necessary empathy from the users.Affective empathy involves behavioral mimicry,a synchronized co-movement between dyadic pairs.However,the characteristics of such synchrony between humans and virtual agents remain unclear in empathic interactions.Our study evaluates the participant’s behavioral synchronization when a virtual agent exhibits an emotional expression congruent with the emotional context through facial expressions,behavioral gestures,and voice.Participants viewed an emotion-eliciting video stimulus(negative or positive)with a virtual agent.The participants then conversed with the virtual agent about the video,such as how the participant felt about the content.The virtual agent expressed emotions congruent with the video or neutral emotion during the dialog.The participants’facial expressions,such as the facial expressive intensity and facial muscle movement,were measured during the dialog using a camera.The results showed the participants’significant behavioral synchronization(i.e.,cosine similarity≥.05)in both the negative and positive emotion conditions,evident in the participant’s facial mimicry with the virtual agent.Additionally,the participants’facial expressions,both movement and intensity,were significantly stronger in the emotional virtual agent than in the neutral virtual agent.In particular,we found that the facial muscle intensity of AU45(Blink)is an effective index to assess the participant’s synchronization that differs by the individual’s empathic capability(low,mid,high).Based on the results,we suggest an appraisal criterion to provide empirical conditions to validate empathic interaction based on the facial expression measures.展开更多
The emergence of the somatosensory interactive technology has changed the ways of the interaction between the users and the computers, so that people can control the computers more freely. This paper focuses on the in...The emergence of the somatosensory interactive technology has changed the ways of the interaction between the users and the computers, so that people can control the computers more freely. This paper focuses on the interactive design of the somatosensory games, and combines the Kinect interactive devices with the popular Unity 3D game engines, and analyzes and designs the realization principles of the somatosensory games, the somatosensory games and the digital somatosensory interactive display. Through the design and production of the original game "Dream", the author discusses the design methods of the game interactive experience while abandoning the traditional human-comouter interactive mode.展开更多
Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Severa...Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.展开更多
Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio...Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.展开更多
In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and...In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and cameras,often caused by environmental factors.This issue has spurred the need for advanced data processing methods to achieve more accurate gesture recognition and predictions.Our study presents a novel virtual keyboard allowing character input via distinct hand gestures,focusing on two key aspects:hand gesture recognition and character input mechanisms.We developed a novel model with LSTM and fully connected layers for enhanced sequential data processing and hand gesture recognition.We also integrated CNN,max-pooling,and dropout layers for improved spatial feature extraction.This model architecture processes both temporal and spatial aspects of hand gestures,using LSTM to extract complex patterns from frame sequences for a comprehensive understanding of input data.Our unique dataset,essential for training the model,includes 1,662 landmarks from dynamic hand gestures,33 postures,and 468 face landmarks,all captured in real-time using advanced pose estimation.The model demonstrated high accuracy,achieving 98.52%in hand gesture recognition and over 97%in character input across different scenarios.Its excellent performance in real-time testing underlines its practicality and effectiveness,marking a significant advancement in enhancing human-device interactions in the digital age.展开更多
With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive use...With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive user experience that does not require physical contact and is becoming increasingly prevalent across various fields. Gesture recognition systems based on Frequency Modulated Continuous Wave (FMCW) millimeter-wave radar are receiving widespread attention due to their ability to operate without wearable sensors, their robustness to environmental factors, and the excellent penetrative ability of radar signals. This paper first reviews the current main gesture recognition applications. Subsequently, we introduce the system of gesture recognition based on FMCW radar and provide a general framework for gesture recognition, including gesture data acquisition, data preprocessing, and classification methods. We then discuss typical applications of gesture recognition systems and summarize the performance of these systems in terms of experimental environment, signal acquisition, signal processing, and classification methods. Specifically, we focus our study on four typical gesture recognition systems, including air-writing recognition, gesture command recognition, sign language recognition, and text input recognition. Finally, this paper addresses the challenges and unresolved problems in FMCW radar-based gesture recognition and provides insights into potential future research directions.展开更多
With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors we...With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors were widely applied due to their low cost. This paper explored the implementation of a human hand posture recognition system using ToF sensors and residual neural networks. Firstly, this paper reviewed the typical applications of human hand recognition. Secondly, this paper designed a hand gesture recognition system using a ToF sensor VL53L5. Subsequently, data preprocessing was conducted, followed by training the constructed residual neural network. Then, the recognition results were analyzed, indicating that gesture recognition based on the residual neural network achieved an accuracy of 98.5% in a 5-class classification scenario. Finally, the paper discussed existing issues and future research directions.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB1600601)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U1933106)+2 种基金the Scientific Research Project of Tianjin Educational Committee(2019KJ134)the Natural Science Foundation of TianjinIntelligent Civil Aviation Program(21JCQNJ C00900)。
文摘To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.
基金supported by the National Key Research and Development Program of China(2021YFB3901205)National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.
基金supported by the China Fundamental Research Funds for the Central Universities(2022JBQY006)。
文摘Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates constraints and objectives generated through human-computer interaction.This approach ensures that the model is aligned with practical requirements and daily operational tasks while facilitating iterative train rescheduling.The dispatcher’s empirical knowledge is integrated into the train rescheduling process using a human-computer interaction framework.We introduce six interfaces to dynamically construct constraints and objectives that capture human intentions.By summarizing rescheduling rules,we devise a rule-based conflict detection-resolution heuristic algorithm to effectively solve the formulated model.A series of numerical experiments are presented,demonstrating strong performance across the entire system.Furthermore,theflexibility of rescheduling is enhanced through secondary analysis-driven solutions derived from the outcomes of humancomputer interactions in the previous step.This proposed interaction method complements existing literature on rescheduling methods involving human-computer interactions.It serves as a tool to aid dispatchers in identifying more feasible solutions in accordance with their empirical rescheduling strategies.
文摘With the popularity of new intelligent mobile devices in people’s lives,the development of mobile applications has paid increasing attention to the interactive experience of users.As the content of traditional Human-Computer Interaction(HCI)course and teaching material is out of date,it cannot meet the needs of mobile application interaction design and enterprises for students.Therefore,we need a new generation HCI course based on intelligent mobile devices to study the relationship between users and systems.The HCI course not only teaches students HCI theory and model,but also needs to cultivate students’interaction-oriented design practical ability.This paper proposes a set of HCI teaching material design and teaching methods for improving HCI class quality on mobile application interaction design,so as to make students more suitable for the employment requirements of enterprises.
文摘Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.
基金the National Undergraduate Innovation Program Training Project(No.202110755022)。
文摘Triboelectric nanogenerator(TENG)converts mechanical energy into valuable electrical energy,offering a solution for future energy needs.As an indispensable part of TENG,textile TENG(T-TENG)has incredible advantages in harvesting biomechanical energy and physiological signal monitoring.However,the application of T-TENG is restricted,partly because the fabric structure parameter and structure on T-TENG performance have not been fully exploited.This study comprehensively investigates the effect of weaving structure on fabric TENGs(F-TENGs)for direct-weaving yarn TENGs and post-coating fabric TENGs.For direct-weaving F-TENGs,a single-yarn TENG(Y-TENG)with a core-sheath structure is fabricated using conductive yarn as the core layer yarn and polytetrafluoroethylene(PTFE)filaments as the sheath yarn.Twelve fabrics with five different sets of parameters were designed and investigated.For post-coating F-TENGs,fabrics with weaving structures of plain,twill,satin,and reinforced twill were fabricated and coated with conductive silver paint.Overall,the twill F-TENGs have the best electrical outputs,followed by the satin F-TENGs and plain weave F-TENGs.Besides,the increase of the Y-TENG gap spacing was demonstrated to improve the electrical output performance.Moreover,T-TENGs are demonstrated for human-computer interaction and self-powered real-time monitoring.This systematic work provides guidance for the future T-TENG’s design.
基金Supported by the National High Technology Research and Development Programme of China(No.2013AA010803,2009AA01Z311,2009AA01Z314)the National Natural Science Foundation of China(No.61304205,61203316,61272379,61103086,41301037)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20141002)the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University,Jiangsu Ordinary University Science Research Project(No.13KJB120007)Innovation and Entrepreneurship Training Project of College Students(No.201410300153,201410300165)the Excellent Undergraduate Paper(design)Supporting Project of NUIST
文摘To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. Different soft tissues are modeled by changing the width, number of pieces, thickness, and length of a single plate spring. In this paper, the structural design, calcula- tion of soft tissue deformation and real-time feedback operations of our system are also introduced. To evaluate the feasibility of the system and validate the model, an experimental system of haptic in- teraction, in which users can use virtual hands to pull virtual brain tissues, is built using PHANTOM OMNI devices. Experimental results show that the proposed system is stable, accurate and promising for modeling instantaneous soft tissue deformation.
文摘In this paper,we present an RFID based human and Unmanned Aerial Vehicle(UAV)Interaction system,termed RFHUI,to provide an intuitive and easy-to-operate method to navigate a UAV in an indoor environment.It relies on the passive Radio-Frequency IDentification(RFID)technology to precisely track the pose of a handheld controller,and then transfer the pose information to navigate the UAV.A prototype of the handheld controller is created by attaching three or more Ultra High Frequency(UHF)RFID tags to a board.A Commercial Off-The-Shelf(COTS)RFID reader with multiple antennas is deployed to collect the observations of the tags.First,the precise positions of all the tags can be obtained by our proposed method,which leverages a Bayesian filter and Channel State Information(CSI)phase measurements collected from the RFID reader.Second,we introduce a Singular Value Decomposition(SVD)based approach to obtain a 6-DoF(Degrees of Freedom)pose of the controller from estimated positions of the tags.Furthermore,the pose of the controller can be precisely tracked in a real-time manner,while the user moves the controller.Finally,control commands will be generated from the controller's pose and sent to the UAV for navigation.The performance of the RFHUI is evaluated by several experiments.The results show that it provides precise poses with 0.045m mean error in position and 2.5∘mean error in orientation for the controller,and enables the controller to precisely and intuitively navigate the UAV in an indoor environment.
文摘In this paper,we investigate methodologies to improve direct-touch interaction on invisible and intangible spatial input.We firstly discuss about the motive of looking for a new input method for whole body interaction and how it can be meaningful.We also describe the role that can play spatial interaction to improve the freedom of interaction for a user.We propose a method of spatial centered interaction using invisible and intangible spatial inputs.However,given their lack of tactile feedback and visual representation,direct touch interaction on such input can be confused.In order to make a step toward understanding causes and solutions for such phenomena,we made 2 user experiments.In the first one,we test 5 setups of helper that provide information of the location of the input by constraining the dimension it is located at.The results show that using marker on the ground and a relationship with the height of the user’s body improve significantly the locative task.In the second experiment,we create a dancing game using invisible and intangible spatial inputs and we stress the results obtained in the first experiment within this cognitively demanding context.Results show that the same setup of helper is still providing very good results in that context.
基金This work was supported by the Basic Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)under Grant 2019R1F1A1045329 and Grant 2020R1A4A1017775.
文摘Gaze estimation is one of the most promising technologies for supporting indoor monitoring and interaction systems.However,previous gaze estimation techniques generally work only in a controlled laboratory environment because they require a number of high-resolution eye images.This makes them unsuitable for welfare and healthcare facilities with the following challenging characteristics:1)users’continuous movements,2)various lighting conditions,and 3)a limited amount of available data.To address these issues,we introduce a multi-view multi-modal head-gaze estimation system that translates the user’s head orientation into the gaze direction.The proposed system captures the user using multiple cameras with depth and infrared modalities to train more robust gaze estimators under the aforementioned conditions.To this end,we implemented a deep learning pipeline that can handle different types and combinations of data.The proposed system was evaluated using the data collected from 10 volunteer participants to analyze how the use of single/multiple cameras and modalities affect the performance of head-gaze estimators.Through various experiments,we found that 1)an infrared-modality provides more useful features than a depth-modality,2)multi-view multi-modal approaches provide better accuracy than singleview single-modal approaches,and 3)the proposed estimators achieve a high inference efficiency that can be used in real-time applications.
文摘Artificial entities,such as virtual agents,have become more pervasive.Their long-term presence among humans requires the virtual agent’s ability to express appropriate emotions to elicit the necessary empathy from the users.Affective empathy involves behavioral mimicry,a synchronized co-movement between dyadic pairs.However,the characteristics of such synchrony between humans and virtual agents remain unclear in empathic interactions.Our study evaluates the participant’s behavioral synchronization when a virtual agent exhibits an emotional expression congruent with the emotional context through facial expressions,behavioral gestures,and voice.Participants viewed an emotion-eliciting video stimulus(negative or positive)with a virtual agent.The participants then conversed with the virtual agent about the video,such as how the participant felt about the content.The virtual agent expressed emotions congruent with the video or neutral emotion during the dialog.The participants’facial expressions,such as the facial expressive intensity and facial muscle movement,were measured during the dialog using a camera.The results showed the participants’significant behavioral synchronization(i.e.,cosine similarity≥.05)in both the negative and positive emotion conditions,evident in the participant’s facial mimicry with the virtual agent.Additionally,the participants’facial expressions,both movement and intensity,were significantly stronger in the emotional virtual agent than in the neutral virtual agent.In particular,we found that the facial muscle intensity of AU45(Blink)is an effective index to assess the participant’s synchronization that differs by the individual’s empathic capability(low,mid,high).Based on the results,we suggest an appraisal criterion to provide empirical conditions to validate empathic interaction based on the facial expression measures.
文摘The emergence of the somatosensory interactive technology has changed the ways of the interaction between the users and the computers, so that people can control the computers more freely. This paper focuses on the interactive design of the somatosensory games, and combines the Kinect interactive devices with the popular Unity 3D game engines, and analyzes and designs the realization principles of the somatosensory games, the somatosensory games and the digital somatosensory interactive display. Through the design and production of the original game "Dream", the author discusses the design methods of the game interactive experience while abandoning the traditional human-comouter interactive mode.
基金Supported by the‘Automotive Glazing Application in Intelligent Cockpit Human-Machine Interface’project(SKHX2021049)a collaboration between the Saint-Go Bain Research and the Beijing Normal University。
文摘Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.
基金supported by the National Natural Science Foundation of China(No.12172076)。
文摘Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.
文摘In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and cameras,often caused by environmental factors.This issue has spurred the need for advanced data processing methods to achieve more accurate gesture recognition and predictions.Our study presents a novel virtual keyboard allowing character input via distinct hand gestures,focusing on two key aspects:hand gesture recognition and character input mechanisms.We developed a novel model with LSTM and fully connected layers for enhanced sequential data processing and hand gesture recognition.We also integrated CNN,max-pooling,and dropout layers for improved spatial feature extraction.This model architecture processes both temporal and spatial aspects of hand gestures,using LSTM to extract complex patterns from frame sequences for a comprehensive understanding of input data.Our unique dataset,essential for training the model,includes 1,662 landmarks from dynamic hand gestures,33 postures,and 468 face landmarks,all captured in real-time using advanced pose estimation.The model demonstrated high accuracy,achieving 98.52%in hand gesture recognition and over 97%in character input across different scenarios.Its excellent performance in real-time testing underlines its practicality and effectiveness,marking a significant advancement in enhancing human-device interactions in the digital age.
文摘With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive user experience that does not require physical contact and is becoming increasingly prevalent across various fields. Gesture recognition systems based on Frequency Modulated Continuous Wave (FMCW) millimeter-wave radar are receiving widespread attention due to their ability to operate without wearable sensors, their robustness to environmental factors, and the excellent penetrative ability of radar signals. This paper first reviews the current main gesture recognition applications. Subsequently, we introduce the system of gesture recognition based on FMCW radar and provide a general framework for gesture recognition, including gesture data acquisition, data preprocessing, and classification methods. We then discuss typical applications of gesture recognition systems and summarize the performance of these systems in terms of experimental environment, signal acquisition, signal processing, and classification methods. Specifically, we focus our study on four typical gesture recognition systems, including air-writing recognition, gesture command recognition, sign language recognition, and text input recognition. Finally, this paper addresses the challenges and unresolved problems in FMCW radar-based gesture recognition and provides insights into potential future research directions.
文摘With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors were widely applied due to their low cost. This paper explored the implementation of a human hand posture recognition system using ToF sensors and residual neural networks. Firstly, this paper reviewed the typical applications of human hand recognition. Secondly, this paper designed a hand gesture recognition system using a ToF sensor VL53L5. Subsequently, data preprocessing was conducted, followed by training the constructed residual neural network. Then, the recognition results were analyzed, indicating that gesture recognition based on the residual neural network achieved an accuracy of 98.5% in a 5-class classification scenario. Finally, the paper discussed existing issues and future research directions.