期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Novel Polymorphic Topology with Hybrid Control Strategy Based LLC Resonant Converter for Ultra-Wide Input Voltage Range Applications
1
作者 Chi Zhang Yong Shi Xuwei Gui 《Energy Engineering》 EI 2021年第2期341-361,共21页
To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a ... To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a full bridge LLC resonant converter,three-level half bridge LLC resonant converter,and variable frequency control mode,the converter realizes an intelligent estimation of input voltage by automatically changing its internal cir-cuit topology.Under this control strategy,different input voltages determine different operation modes.This is achieved in full bridge LLC mode when the input voltage is low.If the input voltage rises to a certain level,it operates in three-level half bridge LLC mode.These switches are digital and entirely carried out by the DSP(Digi-tal Signal Processor),which means that an auxiliary circuit is unnecessary,where a simple strategy of software modification can be utilized.Experimental results of a 500W prototype with 100V~600V input voltage and full load efficiency of up to 92%are developed to verify feasibility and practicability.This type of converter is suitable for applications with an ultra-wide input voltage range,such as wind turbines,photovoltaic generators,bioenergy,and other renewable energy sources. 展开更多
关键词 Renewable energy sources power converter ultra-wide input voltage range multi-levels operation mode hybrid control strategy soft switching
下载PDF
Hybrid Control Strategy for Matrix Converter Fed Wind Energy Conversion System
2
作者 Jamna Ayadathil Jamuna Venkatesan 《Circuits and Systems》 2016年第10期3038-3053,共16页
In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence i... In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence it is necessary to design a system that regulates output parameters, such as voltage and frequency, and thereby provides a constant voltage and frequency output from the wind energy conversion system. Matrix converter is used in the proposed solution as the main power conditioner as a more efficient alternative when compared to traditional back-back converter structure. To control the output voltage, a vector modulation based refined control structure is used. A power tracker is included to maximize the mechanical output power of the turbine. Over current protection and clamp circuit input protection have been introduced to protect the system from over current. It reduces the spikes generated at the output of the converter. The designed system is capable of supplying an output voltage of constant frequency and amplitude within the expected ranges of input during the operation. The matrix converter control using direct modulation method, modified Venturini modulation method and vector modulation method was simulated, the results were compared and it was inferred that vector modulation method was superior to the other two methods. With the proposed technique, voltage transfer ratio and harmonic profile have been improved compared to the other two modulation techniques. The behaviour of the system is corroborated by MATLAB Simulink, and hardware is realized using an FPGA controller. Experimental results are found to be matching with the simulation results. 展开更多
关键词 hybrid control strategy Wind Energy Conversion System Three Phase Matrix Converter Space Vector Modulation Over Current/Clamp Circuit Protection FPGA controller
下载PDF
A hybrid brain-computer interface control strategy in a virtual environment 被引量:2
3
作者 Yu SU 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第5期351-361,共11页
This paper presents a hybrid brain-computer interface (BCI) control strategy,the goal of which is to expand control functions of a conventional motor imagery or a P300 potential based BCI in a virtual environment.The ... This paper presents a hybrid brain-computer interface (BCI) control strategy,the goal of which is to expand control functions of a conventional motor imagery or a P300 potential based BCI in a virtual environment.The hybrid control strategy utilizes P300 potential to control virtual devices and motor imagery related sensorimotor rhythms to navigate in the virtual world.The two electroencephalography (EEG) patterns serve as source signals for different control functions in their corresponding system states,and state switch is achieved in a sequential manner.In the current system,imagination of left/right hand movement was translated into turning left/right in the virtual apartment continuously,while P300 potentials were mapped to discrete virtual device control commands using a five-oddball paradigm.The combination of motor imagery and P300 patterns in one BCI system for virtual environment control was tested and the results were compared with those of a single motor imagery or P300-based BCI.Subjects obtained similar performances in the hybrid and single control tasks,which indicates the hybrid control strategy works well in the virtual environment. 展开更多
关键词 hybrid brain-computer interface (BCI) control strategy P300 potential Sensorimotor rhythms Virtual environment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部