To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as com...To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C.展开更多
To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical pr...To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical properties of concrete were discussed.The mechanical properties include compressive strength,tensile strength,flexural strength,compressive stress-strain relationship,flexural toughness and cracking resistance of concrete.The testing results and analysis demonstrate that layered hybrid fibers can significantly improve the flexural strength,toughness and cracking resistance of concrete while the cost of concrete increases slightly.展开更多
In order to obtain the fatigue life of layered hybrid fiber reinforced concrete (LHFRC) at different stress levels, flexural fatigue tests were carried out on specimens. The relation between fatigue lives and stress...In order to obtain the fatigue life of layered hybrid fiber reinforced concrete (LHFRC) at different stress levels, flexural fatigue tests were carried out on specimens. The relation between fatigue lives and stress levels was simulated using the two-parameter Weibull distribution. Furthermore, both single- logarithmic and double-logarithmic regressive equations of various reliabilities were derived. It is evident that LHFRC gets the advantage of longer fatigue life over common concrete.展开更多
Recently,addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials.This is because natural fibers are much cheaper and locally available,as compare to s...Recently,addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials.This is because natural fibers are much cheaper and locally available,as compare to synthetic fibers.Keeping in view,this current research conducted mainly focuses on the static properties of hybridized(sisal/coir),sisal and coir fiber-reinforced concrete.Two types of natural fibers sisal and coir were used in the experiment with different lengths of 10,20 and 30 mm and various natural fiber concentrations of 0.5%,1.0%,and 1.5%by mass of cement,to investigate the static properties of sisal fiber reinforced concrete(SFRC),coir fiber reinforced concrete(CFRC)and hybrid fiber reinforced concrete(HFRC).The results indicate that HFRC has increased the compressive strength up to 35.98%with the length of 20 mm and with 0.5%concentration,while the CFRC and SFRC with the length of 10 mm and with 1%concentration have increased the compressive strength up to 33.94%and 24.86%,respectively.On another hand,the split tensile strength was increased by HFRC with the length of 20 mm and with 1%concentration,CFRC with the length of 10 mm and with 1.5%concentration,and SFRC with the length of 30 mm and with 1%concentration have increased up to 25.48%,24.56%and 11.80%,respectively,while the HFRC with the length of 20 mm and with 0.5%concentration has increased the compressive strength of concrete but has decreased the split tensile strength up to 2.28%compared to PC.Overall,using the HFRC with the length of 20 mm and with 1%concentration provide the maximum output in terms of split tensile strength.展开更多
Carbon/glass fiber hybrid textile reinforced concrete is a relatively new composite material with good mechanical capacity and excellent electrical conductivity.Both small-scale slab heating experiments and numerical ...Carbon/glass fiber hybrid textile reinforced concrete is a relatively new composite material with good mechanical capacity and excellent electrical conductivity.Both small-scale slab heating experiments and numerical simulation are presented in this paper.Temperature variation curves obtained during heating indicate the effects of environmental temperature,heat-conducting layer thickness and electric heating power.Comparison of temperature rising between the situations with and without thermal isolation layer is given as well.The results indicate that the textile can form a good conductive heating network and generate enough heat to raise the temperature in the concrete when connected to a power supply,while the resistance of the slab remains stable during the heating.Numerical results are in good accordance with the experiments.Real time snow-melting experiment was conducted to verify the feasibility of deicing.The electrothermal properties of textile can be utilized for deicing and snow melting in a safe,environmentally friendly and efficient way.展开更多
The tensile behavior of hybrid fiber reinforced concrete(HFRC)is important to the design of HFRC and HFRC structure.This study used an artificial neural network(ANN)model to describe the tensile behavior of HFRC.This ...The tensile behavior of hybrid fiber reinforced concrete(HFRC)is important to the design of HFRC and HFRC structure.This study used an artificial neural network(ANN)model to describe the tensile behavior of HFRC.This ANN model can describe well the tensile stress-strain curve of HFRC with the consideration of 23 features of HFRC.In the model,three methods to process output features(no-processed,mid-processed,and processed)are discussed and the mid-processed method is recommended to achieve a better reproduction of the experimental data.This means the strain should be normalized while the stress doesn’t need normalization.To prepare the database of the model,both many direct tensile test results and the relevant literature data are collected.Moreover,a traditional equation-based model is also established and compared with the ANN model.The results show that the ANN model has a better prediction than the equation-based model in terms of the tensile stress-strain curve,tensile strength,and strain corresponding to tensile strength of HFRC.Finally,the sensitivity analysis of the ANN model is also performed to analyze the contribution of each input feature to the tensile strength and strain corresponding to tensile strength.The mechanical properties of plain concrete make the main contribution to the tensile strength and strain corresponding to tensile strength,while steel fibers tend to make more contributions to these two items than PVA fibers.展开更多
基金the Technical Specification for Fiber Reinforced ConcreteStructure (No. CECS:2004 2000jb15)
文摘To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C.
文摘To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical properties of concrete were discussed.The mechanical properties include compressive strength,tensile strength,flexural strength,compressive stress-strain relationship,flexural toughness and cracking resistance of concrete.The testing results and analysis demonstrate that layered hybrid fibers can significantly improve the flexural strength,toughness and cracking resistance of concrete while the cost of concrete increases slightly.
基金the National Program of Technical Specification for Fiber Reinforced Concrete Structures(No.15 of CECS-China Association for Engineering Construction Standardization)
文摘In order to obtain the fatigue life of layered hybrid fiber reinforced concrete (LHFRC) at different stress levels, flexural fatigue tests were carried out on specimens. The relation between fatigue lives and stress levels was simulated using the two-parameter Weibull distribution. Furthermore, both single- logarithmic and double-logarithmic regressive equations of various reliabilities were derived. It is evident that LHFRC gets the advantage of longer fatigue life over common concrete.
基金This work has been supported by the Yunnan Science and Technology Major Project,Yunnan China under Grant No.202002AE090010。
文摘Recently,addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials.This is because natural fibers are much cheaper and locally available,as compare to synthetic fibers.Keeping in view,this current research conducted mainly focuses on the static properties of hybridized(sisal/coir),sisal and coir fiber-reinforced concrete.Two types of natural fibers sisal and coir were used in the experiment with different lengths of 10,20 and 30 mm and various natural fiber concentrations of 0.5%,1.0%,and 1.5%by mass of cement,to investigate the static properties of sisal fiber reinforced concrete(SFRC),coir fiber reinforced concrete(CFRC)and hybrid fiber reinforced concrete(HFRC).The results indicate that HFRC has increased the compressive strength up to 35.98%with the length of 20 mm and with 0.5%concentration,while the CFRC and SFRC with the length of 10 mm and with 1%concentration have increased the compressive strength up to 33.94%and 24.86%,respectively.On another hand,the split tensile strength was increased by HFRC with the length of 20 mm and with 1%concentration,CFRC with the length of 10 mm and with 1.5%concentration,and SFRC with the length of 30 mm and with 1%concentration have increased up to 25.48%,24.56%and 11.80%,respectively,while the HFRC with the length of 20 mm and with 0.5%concentration has increased the compressive strength of concrete but has decreased the split tensile strength up to 2.28%compared to PC.Overall,using the HFRC with the length of 20 mm and with 1%concentration provide the maximum output in terms of split tensile strength.
文摘Carbon/glass fiber hybrid textile reinforced concrete is a relatively new composite material with good mechanical capacity and excellent electrical conductivity.Both small-scale slab heating experiments and numerical simulation are presented in this paper.Temperature variation curves obtained during heating indicate the effects of environmental temperature,heat-conducting layer thickness and electric heating power.Comparison of temperature rising between the situations with and without thermal isolation layer is given as well.The results indicate that the textile can form a good conductive heating network and generate enough heat to raise the temperature in the concrete when connected to a power supply,while the resistance of the slab remains stable during the heating.Numerical results are in good accordance with the experiments.Real time snow-melting experiment was conducted to verify the feasibility of deicing.The electrothermal properties of textile can be utilized for deicing and snow melting in a safe,environmentally friendly and efficient way.
基金The authors would like to acknowledge the National Natural Science Foundation of China(Grant Nos.51978515,41941018)Shanghai Sailing Program(19YF1451400)Shanghai Municipal Science and Technology Major Project(2017SHZDZX02)for their financial support.
文摘The tensile behavior of hybrid fiber reinforced concrete(HFRC)is important to the design of HFRC and HFRC structure.This study used an artificial neural network(ANN)model to describe the tensile behavior of HFRC.This ANN model can describe well the tensile stress-strain curve of HFRC with the consideration of 23 features of HFRC.In the model,three methods to process output features(no-processed,mid-processed,and processed)are discussed and the mid-processed method is recommended to achieve a better reproduction of the experimental data.This means the strain should be normalized while the stress doesn’t need normalization.To prepare the database of the model,both many direct tensile test results and the relevant literature data are collected.Moreover,a traditional equation-based model is also established and compared with the ANN model.The results show that the ANN model has a better prediction than the equation-based model in terms of the tensile stress-strain curve,tensile strength,and strain corresponding to tensile strength of HFRC.Finally,the sensitivity analysis of the ANN model is also performed to analyze the contribution of each input feature to the tensile strength and strain corresponding to tensile strength.The mechanical properties of plain concrete make the main contribution to the tensile strength and strain corresponding to tensile strength,while steel fibers tend to make more contributions to these two items than PVA fibers.