期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanisms of shale hydration and water block removal 被引量:2
1
作者 ZENG Fanhui ZHANG Qiang +3 位作者 GUO Jianchun ZENG Bo ZHANG Yu HE Songgen 《Petroleum Exploration and Development》 CSCD 2021年第3期752-761,共10页
Shale samples of Silurian Longmaxi Formation in the Changning area of the Sichuan Basin, SW China, were selected to carry out scanning electron microscopy, CT imaging, high-pressure mercury injection, low-temperature ... Shale samples of Silurian Longmaxi Formation in the Changning area of the Sichuan Basin, SW China, were selected to carry out scanning electron microscopy, CT imaging, high-pressure mercury injection, low-temperature nitrogen adsorption and imbibition experiments to compare the hydration characteristics of montmorillonite and illite, analyze the main factors affecting the water block removal of shale, and reveal the mechanisms of pore structure evolution during shale hydration. The hydration characteristics of shale are closely related to the composition of clay minerals, the shale with high illite content is not susceptible to hydration and thus has limited room for pore structure improvement;the shale with high montmorillonite is susceptible to hydration expansion and thus has higher potential of pore structure improvement by stimulation;the shale with high illite content has stronger imbibition in the initial stage, but insufficient diffusion ability, and thus is likely to have water block;the shale with high montmorillonite content has weaker imbibition in the initial stage but better water diffusion, so water blocking in this kind of shale can be removed to some degree;the shale reservoir has an optimal hydration time, when it is best in physical properties, but hydration time too long would cause damage to the reservoir, and the shale with high illite content has a shorter optimal hydration time;inorganic cations can inhibit the hydration of clay minerals and have stronger inhibition to illite expansion, especially K^(+);for the reservoir with high content of montmorillonite, the cation content of fracturing fluid can be lowered to promote the shale hydration;fracturing fluid with high K^(+) content can be injected into reservoirs with high illite content to suppress hydration. 展开更多
关键词 SHALE clay minerals hydration microscopic pore structure water block effect fracturing fluid diffusion optimal hydration time water block removal
下载PDF
Neural computing efforts for integrated simulation of ultrasound-assisted hydration kinetics of wheat 被引量:4
2
作者 S.M.Shafaei A.Nourmohamadi-Moghadami +1 位作者 H.Rahmanian-Koushkaki S.Kamgar 《Information Processing in Agriculture》 EI 2019年第3期357-374,共18页
This study is dedicated to examine predictive ability of neural computing environments,based on artificial neural network(ANN)and adaptive neuro-fuzzy inference system(ANFIS)strategies,for integrated simulation of ult... This study is dedicated to examine predictive ability of neural computing environments,based on artificial neural network(ANN)and adaptive neuro-fuzzy inference system(ANFIS)strategies,for integrated simulation of ultrasound-assisted hydration kinetics of wheat kernel.Hydration process was accomplished at five hydration temperatures of 30,40,50,60 and 70C in ultrasonication conditions named control(without ultrasound treatment),US1(25 kHz,360 W)and US2(40 kHz,480 W).The hydration temperature,ultrasonication condition,and hydration time were used as input variables and moisture content was taken as output variable in the neural computing simulation environments.On account of statistical performance criteria,the distinguished ANFIS simulation environment with coefficient of determination of 0.991,root mean square error of 2.478%d.b.,mean relative deviation modulus of 4.301%and average of absolute values of simulation residual errors of 1.863%d.b.was better performed than the distinguished ANN simulation environment.The ANFIS simulation results showed that individual or simultaneous increment of hydration temperature and hydration time caused nonlinear increment of moisture content at any given ultrasonication condition.Moreover,physical perception obtained from the integrated ANFIS simulation results indicated congruency effect(sponge and acoustic cavitation)of cutting-edge ultrasound technology on water absorption.The ANFIS simulation results improved the state of art in domain of studying ultrasoundassisted hydration process of wheat.Therefore,the distinguished ANFIS simulation environment is suggested to be served as an effective step towards management of ultrasound-assisted hydration process of wheat in seed priming,flour milling(tempering),making dough,and wet storage processes. 展开更多
关键词 Moisture content hydration rate Water absorption hydration time hydration temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部