期刊文献+
共找到236篇文章
< 1 2 12 >
每页显示 20 50 100
Evaluating the stability and volumetric flowback rate of proppant packs in hydraulic fractures using the lattice Boltzmann-discrete element coupling method 被引量:1
1
作者 Duo Wang Sanbai Li +2 位作者 Rui Wang Binhui Li Zhejun Pan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2052-2063,共12页
The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a... The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations. 展开更多
关键词 Numerical simulation hydraulic fracturing Proppant flowback Closure stress Particulate flow
下载PDF
Plugging behaviors of temporary plugging particles in hydraulic fractures 被引量:1
2
作者 GUO Jianchun ZHAN Li +5 位作者 LU Qianli QI Tianjun LIU Yuxuan WANG Xin CHEN Chi GOU Xinghao 《Petroleum Exploration and Development》 SCIE 2023年第2期464-472,共9页
Using the visualized experimental device of temporary plugging in hydraulic fractures, the plugging behaviors of temporary plugging particles with different sizes and concentrations in hydraulic fractures were experim... Using the visualized experimental device of temporary plugging in hydraulic fractures, the plugging behaviors of temporary plugging particles with different sizes and concentrations in hydraulic fractures were experimentally analyzed under the conditions of different carrier fluid displacements and viscosities. The results show that the greater the carrier fluid viscosity and displacement, the more difficult it is to form a plugging layer, and that the larger the size and concentration of the temporary plugging particle, the less difficult it is to form a plugging layer. When the ratio of particle size to fracture width is 0.45, the formation of the plugging layer is mainly controlled by the mass concentration of the temporary plugging particle and the viscosity of the carrier fluid, and a stable plugging layer cannot form if the mass concentration of the temporary plugging particle is less than 20 kg/m^(3)or the viscosity of the carrier fluid is greater than 3 mPa·s. When the ratio of particle size to fracture width is 0.60, the formation of the plugging layer is mainly controlled by the mass concentration of the temporary plugging particle, and a stable plugging layer cannot form if the mass concentration of the temporary plugging particle is less than 10 kg/m^(3). When the ratio of particle size to fracture width is 0.75, the formation of the plugging layer is basically not affected by other parameters, and a stable plugging layer can form within the experimental conditions. The formation process of plugging layer includes two stages and four modes. The main controlling factors affecting the formation mode are the ratio of particle size to fracture width, carrier fluid displacement and carrier fluid viscosity. 展开更多
关键词 hydraulic fracture temporary plugging and diversion temporary plugging particle plugging characteristics construction parameters combination
下载PDF
Experimental study of the temporary plugging capability of diverters to block hydraulic fractures in high-temperature geothermal reservoirs
3
作者 Dao-Bing Wang Hao Qin +3 位作者 Yong-Liang Wang Jian-Qiao Hu Dong-Liang Sun Bo Yu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3687-3699,共13页
The effective plugging of artificial fractures is key to the success of temporary plugging and diverting fracturing technology,which is one of the most promising ways to improve the heat recovery efficiency of hot dry... The effective plugging of artificial fractures is key to the success of temporary plugging and diverting fracturing technology,which is one of the most promising ways to improve the heat recovery efficiency of hot dry rock.At present,how temporary plugging agents plug artificial fractures under high temperature remains unclear.In this paper,by establishing an improved experimental system for the evaluation of temporary plugging performance at high temperature,we clarified the effects of high temperature,injection rate,and fracture width on the pressure response and plugging efficiency of the fracture.The results revealed that the temporary plugging process of artificial fractures in hot dry rock can be divided into four main stages:the initial stage of temporary plugging,the bridging stage of the particles,the plugging formation stage,and the high-pressure dense plugging stage.As the temperature increases,the distribution distance of the temporary plugging agent,the number of pressure fluctuations,and the time required for crack plugging increases.Particularly,when the temperature increases by 100℃,the complete plugging time increases by 90.7%. 展开更多
关键词 High temperature Diverter material Fracture plugging capability hydraulic fracturing Experimental study
下载PDF
Drained rock volume around hydraulic fractures in porous media:planar fractures versus fractal networks 被引量:1
4
作者 Kiran Nandlal Ruud Weijermars 《Petroleum Science》 SCIE CAS CSCD 2019年第5期1064-1085,共22页
This study applies the Lindenmayer system based on fractal theory to generate synthetic fracture networks in hydraulically fractured wells.The applied flow model is based on complex analysis methods,which can quantify... This study applies the Lindenmayer system based on fractal theory to generate synthetic fracture networks in hydraulically fractured wells.The applied flow model is based on complex analysis methods,which can quantify the flow near the fractures,and being gridless,is computationally faster than traditional discrete volume simulations.The representation of hydraulic fractures as fractals is a more realistic representation than planar bi-wing fractures used in most reservoir models.Fluid withdrawal from the reservoir with evenly spaced hydraulic fractures may leave dead zones between planar fractures.Complex fractal networks will drain the reservoir matrix more effectively,due to the mitigation of stagnation flow zones.The flow velocities,pressure response,and drained rock volume(DRV)are visualized for a variety of fractal fracture networks in a single-fracture treatment stage.The major advancement of this study is the improved representation of hydraulic fractures as complex fractals rather than restricting to planar fracture geometries.Our models indicate that when the complexity of hydraulic fracture networks increases,this will suppress the occurrence of dead flow zones.In order to increase the DRV and improve ultimate recovery,our flow models suggest that fracture treatment programs must find ways to create more complex fracture networks. 展开更多
关键词 hydraulic fractures Drained rock volume Dead zones Fractals Branched fractures
下载PDF
Morphology and Propagation of Hydraulic Fractures for CBM Wells
5
作者 WU Caifang ZHANG Xiaoyang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第5期1936-1937,共2页
Objective As the most widely used and effective technique in reservoir reconstruction of unconventional natural gas,hydraulic fracturing has been achieved good effect in CBM development.It is important to note that co... Objective As the most widely used and effective technique in reservoir reconstruction of unconventional natural gas,hydraulic fracturing has been achieved good effect in CBM development.It is important to note that coal seam is both source rock and reservoir, 展开更多
关键词 In Morphology and Propagation of hydraulic fractures for CBM Wells
下载PDF
COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES 被引量:34
6
作者 A.P.Bunger Robert G.Jeffrey 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第5期443-452,共10页
Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient applicat... Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case. 展开更多
关键词 hydraulic fracture cohesive zone model finite element method
下载PDF
Numerical Modelling of Proppant Transport in Hydraulic Fractures 被引量:5
7
作者 Yatin Suri Sheikh Zahidul Islam Mamdud Hossain 《Fluid Dynamics & Materials Processing》 EI 2020年第2期297-337,共41页
The distribution of proppant injected in hydraulic fractures significantly affects the fracture conductivity and well performance.The proppant transport in thin fracturing fluid used during hydraulic fracturing in the... The distribution of proppant injected in hydraulic fractures significantly affects the fracture conductivity and well performance.The proppant transport in thin fracturing fluid used during hydraulic fracturing in the unconventional reservoirs is considerably different from fracturing fluids in the conventional reservoir due to the very low viscosity and quick deposition of the proppants.This paper presents the development of a three-dimensional Computational Fluid Dynamics(CFD)modelling technique for the prediction of proppant-fluid multiphase flow in hydraulic fractures.The proposed model also simulates the fluid leak-off behaviour from the fracture wall.The Euler-Granular and CFD-Discrete Element Method(CFD-DEM)multiphase modelling approach has been applied,and the equations defining the fluid-proppant and inter-proppant interaction have been solved using the finite volume technique.The proppant transport in hydraulic fractures has been studied comprehensively,and the computational modelling results of proppant distribution and other flow properties are in good agreement with the published experimental study.The parametric study is performed to investigate the effect of variation in proppant size,fluid viscosity and fracture width on the proppant transport.Smaller proppants can be injected early,followed by larger proppants to maintain high propping efficiency.This study has enhanced the understanding of the complex flow phenomenon between proppant and fracturing fluid and can play a vital role in hydraulic fracturing design. 展开更多
关键词 Proppant transport hydraulic fracturing eulerian-granular model computational fluid dynamics discrete element method fluid leak-off
下载PDF
Propagation and aperture of staged hydraulic fractures in unconventional resources in toughness-dominated regimes 被引量:1
8
作者 Ali Taghichian Hamid Hashemalhoseini +1 位作者 Musharraf Zaman Saied Beheshti Zavareh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期249-258,共10页
Simultaneous multistage hydraulic fracturing of unconventional gas shale in parallel multilateral wells is an effective technique to raise the connectivity of the reservoir to the wellbore and improve reservoir permea... Simultaneous multistage hydraulic fracturing of unconventional gas shale in parallel multilateral wells is an effective technique to raise the connectivity of the reservoir to the wellbore and improve reservoir permeability for an economical production. However, this technique should be accompanied with some optimization procedures to obtain an efficiently fractured reservoir with the highest production and the lowest cost. In unconventional hydraulic fracturing, fracture deviation/collapse and trapping are familiar phenomena which occur when a non-optimized fracturing pattern is used. These problems occur respectively when stress shadow size has not been considered in optimization and fracturing pressure is higher than the available pressure in the sealed section. Therefore, in an optimized hydraulic fracturing,having straight fractures with no deviation or collapse needs consideration of stress shadow effect(SSE).Apart from that, having efficiently propagated fractures to the extent of the reservoir without any fracture trap requires consideration of stress intensity factor(SIF) and aperture. SSE was studied and published by the authors in 2014. For the case of SIF, investigating any change in mode I SIF and aperture with different influencing variables such as fracture geometry and pattern are studied in the current research work. Three different fracturing techniques are assumed as multistage fracturing, simultaneous single-stage fracturing, and simultaneous multistage fracturing techniques. Since obtaining SIF for threedimensional fractures is a challenging issue, a stress ratio technique is used for calculation of SIF ratios of different fracturing scenarios compared to the case of a single fracture. Therefore, changes of SIF for different fracturing schemes are estimated and analyzed to understand whether or not a fracturing scheme is efficient and all the spaced perforations are activated and change to hydraulic fractures. 展开更多
关键词 hydraulic fracturing Stress intensity factor(SIF) APERTURE Numerical analysis Gas shale
下载PDF
A Numerical Study on the Propagation Mechanisms of Hydraulic Fractures in Fracture-Cavity Carbonate Reservoirs 被引量:1
9
作者 Fang Shi Daobing Wang Xiaogang Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期575-598,共24页
Field data suggests that carbonate reservoirs contain abundant natural fractures and cavities.The propagation mechanisms of hydraulic fractures in fracture-cavity reservoirs are different from conventional reservoirs ... Field data suggests that carbonate reservoirs contain abundant natural fractures and cavities.The propagation mechanisms of hydraulic fractures in fracture-cavity reservoirs are different from conventional reservoirs on account of the stress concentration surrounding cavities.In this paper,we develop a fully coupled numerical model using the extended finite element method(XFEM)to investigate the behaviors and propagation mechanisms of hydraulic fractures in fracture-cavity reservoirs.Simulation results show that a higher lateral stress coefficient can enhance the influence of the natural cavity,causing a more curved fracture path.However,lower confining stress or smaller in-situ stress difference can reduce this influence,and thus contributes to the penetration of the hydraulic fracture towards the cavity.Higher fluid viscosity and high fluid pumping rate are both able to attenuate the effect of the cavity.The frictional natural fracture connected to the cavity can significantly change the stress distribution around the cavity,thus dramatically deviates the hydraulic fracture from its original propagation direction.It is also found that the natural cavity existing between two adjacent fracturing stages will significantly influence the stress distribution between fractures and is more likely to result in irregular propagation paths compared to the case without a cavity. 展开更多
关键词 hydraulic fracturing fracture-cavity reservoir crack propagation XFEM
下载PDF
Characterization of complex hydraulic fractures in Eagle Ford shale oil development through embedded discrete fracture modeling 被引量:1
10
作者 FIALLOS TORRES Mauricio MORALES Adrián +1 位作者 YU Wei MIAO Jijun 《Petroleum Exploration and Development》 CSCD 2021年第3期713-720,共8页
This study extends an integrated field characterization in Eagle Ford by optimizing the numerical reservoir simulation of highly representative complex fractured systems through embedded discrete fracture modeling(EDF... This study extends an integrated field characterization in Eagle Ford by optimizing the numerical reservoir simulation of highly representative complex fractured systems through embedded discrete fracture modeling(EDFM). The bottom-hole flowing pressure was history-matched and the field production was forecasted after screening complex fracture scenarios with more than 100 000 fracture planes based on their propped-type. This work provided a greater understanding of the impact of complex-fractures proppant efficiency on the production. After compaction tables were included for each propped-type fracture group, the estimated pressure depletion showed that the effective drainage area can be smaller than the complex fracture network if modeled and screened by the EDFM method rather than unstructured gridding technique. The essential novel value of this work is the capability to couple EDFM with third-party fracture propagation simulation automatically, considering proppant intensity variation along the complex fractured systems. Thus, this work is pioneer to model complex fracture propagation and well interference accurately from fracture diagnostics and pseudo 3 D fracture propagation outcomes for multiple full wellbores to capture well completion effectiveness after myriads of sharper field simulation cases with EDFM. 展开更多
关键词 EDFM complex fractures hydraulic fracturing fracture networks reservoir simulation shale oil
下载PDF
Formation of X-shaped hydraulic fractures in deep thick glutenite reservoirs:A case study in Bohai Bay Basin,East China
11
作者 LI Zhi-chao LI Lian-chong +7 位作者 WANG Shu-ren MA Shou ZHANG Zi-lin LI Ai-shan HUANG Bo ZHANG Liao-yuan WANG Zeng-lin ZHANG Quan-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2814-2829,共16页
Tight glutenite reservoirs are widely developed in Bohai Bay Basin,East China.They are mostly huge thick and rely on hydraulic fracturing treatment for commercial exploitation.To investigate the propagation behavior o... Tight glutenite reservoirs are widely developed in Bohai Bay Basin,East China.They are mostly huge thick and rely on hydraulic fracturing treatment for commercial exploitation.To investigate the propagation behavior of hydraulic fractures in these glutenite reservoirs,the geological feature of reservoirs in Bohai Bay Basin is studied firstly,including the reservoir vertical distribution feature and the heterogeneous lithology.Then,hydraulic fracturing treatments in block Yan 222 are carried out and the fracturing processes are monitored by the microseismic system.Results show the hydraulic fractures generated in the reservoirs are mostly in X shape.The cause of X-shaped hydraulic fractures in this study is mainly ascribed to(I)the reservoir heterogeneity and(II)the stress shadow effect of two close hydraulic fractures propagating in the same orientation,which is confirmed by the following numerical simulation and related research in detail.This study can provide a reference for the research on the fracturing behavior of the deep thick glutenite reservoirs. 展开更多
关键词 GLUTENITE hydraulic fracture X shape reservoir heterogeneity GRAVEL
下载PDF
Dynamic fluid transport property of hydraulic fractures and its evaluation using acoustic logging
12
作者 LI Huanran TANG Xiaoming +1 位作者 LI Shengqing SU Yuanda 《Petroleum Exploration and Development》 CSCD 2022年第1期223-232,共10页
The existing acoustic logging methods for evaluating the hydraulic fracturing effectiveness usually use the fracture density to evaluate the fracture volume, and the results often cannot accurately reflect the actual ... The existing acoustic logging methods for evaluating the hydraulic fracturing effectiveness usually use the fracture density to evaluate the fracture volume, and the results often cannot accurately reflect the actual productivity. This paper studies the dynamic fluid flow through hydraulic fractures and its effect on borehole acoustic waves. Firstly, based on the fractal characteristics of fractures observed in hydraulic fracturing experiments, a permeability model of complex fracture network is established. Combining the dynamic fluid flow response of the model with the Biot-Rosenbaum theory that describes the acoustic wave propagation in permeable formations, the influence of hydraulic fractures on the velocity dispersion of borehole Stoneley-wave is then calculated and analyzed, whereby a novel hydraulic fracture fluid transport property evaluation method is proposed. The results show that the Stoneley-wave velocity dispersion characteristics caused by complex fractures can be equivalent to those of the plane fracture model, provided that the average permeability of the complex fracture model is equal to the permeability of the plane fracture. In addition, for fractures under high-permeability(fracture width 10~100 μm, permeability ~100 μm^(2)) and reduced permeability(1~10 μm, ~10 μm^(2), as in fracture closure) conditions, the Stoneley-wave velocity dispersion characteristics are significantly different. The field application shows that this fluid transport property evaluation method is practical to assess the permeability and the connectivity of hydraulic fractures. 展开更多
关键词 hydraulic fracture dynamic fluid transport property acoustic logging Stoneley-wave velocity dispersion fracture characterization
下载PDF
Stress tensor determination by modified hydraulic tests on pre-existing fractures:Method and stress constraints
13
作者 Guiyun Gao Chenghu Wang Ke Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1637-1648,共12页
The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determinati... The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole. 展开更多
关键词 Stress tensor hydraulic tests on pre-existing fractures Mean stress Stress constraint hydraulic fracturing
下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:2
14
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir Fracture conductivity Fracturing fluid hydraulic fracturing Reservoir damage
下载PDF
Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing Block,eastern Ordos Basin,NW China 被引量:1
15
作者 YANG Fan LI Bin +3 位作者 WANG Kunjian WEN Heng YANG Ruiyue HUANG Zhongwei 《Petroleum Exploration and Development》 SCIE 2024年第2期440-452,共13页
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the... Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM. 展开更多
关键词 deep coalbed methane extreme massive hydraulic fracturing fracture network graded proppants slick water with variable viscosity Ordos Basin
下载PDF
Simulation of directional propagation of hydraulic fractures induced by slotting based on discrete element method
16
作者 Kai Wang Guodong Zhang +3 位作者 Feng Du Yanhai Wang Liangping Yi Jianquan Zhang 《Petroleum》 EI CSCD 2023年第4期592-606,共15页
Hydraulic fracturing(HF)technology can safely and efficiently increase the permeability of coal seam,which is conducive to CBM exploration and prevent coal and gas outburst.However,conventional HF fractures tend to ex... Hydraulic fracturing(HF)technology can safely and efficiently increase the permeability of coal seam,which is conducive to CBM exploration and prevent coal and gas outburst.However,conventional HF fractures tend to expand in the direction of maximum principal stress,which may be inconsistent with the direction of fracturing required by the project.Therefore,the increased direction of coal seam permeability is different from that expected.To solve these problems,PFC2D software simulation is used to study directional hydraulic fracturing(DHF),that is the combination of slotting and hydraulic fracturing.The effects of different slotting angles(θ),different horizontal stress difference coefficients(K)and different injection pressures on DHF fracture propagation are analyzed.The results show that the DHF method can overcome the dominant effect of initial in-situ stress on the propagation direction of hydraulic fractures and control the propagation of fractures along and perpendicular to the slotting direction when θ,K and liquid injection pressure are small.When the DHF fracture is connected with manual slotting,the pressure will shake violently,and the fracturing curve presents a multi-peak type.The increase and decrease of particle pressure around the fracturing hole reflect the process of pressure accumulation and fracture propagation at the fracture tip respectively.Compared with conventional HF,DHF can not only shorten the fracturing time but also make the fracture network more complex,which is more conducive to gas flow.Under the action of in-situ stress,the stress between slots will increase to exceed the maximum horizontal principal stress.Moreover,with the change in fracturing time,the local stress of the model will also change.Hydraulic fractures are always expanding to the area with large local stress.The research results could provide certain help for DHF theoretical research and engineering application. 展开更多
关键词 COAL Directional hydraulic fracturing(DHF) PFC simulation Fracture propagation SLOTTING
原文传递
Influences of clean fracturing fluid viscosity and horizontal in-situ stress difference on hydraulic fracture propagation and morphology in coal seam
17
作者 Gang Wang Shuxin Wang +5 位作者 Yixin Liu Qiming Huang Shengpeng Li Shuliang Xie Jinye Zheng Jiuyuan Fan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期159-175,共17页
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ... The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters. 展开更多
关键词 Clean fracturing fluid hydraulic fracturing VISCOSITY Horizontal in-situ stress difference hydraulic fracture morphology Acoustic emission
下载PDF
Implications for fault reactivation and seismicity induced by hydraulic fracturing
18
作者 Zi-Han Sun Ming-Guang Che +3 位作者 Li-Hong Zhu Shu-Juan Zhang Ji-Yuan Lu Chang-Yu Jin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1081-1098,共18页
Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operation... Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operations. Current understanding supports the overriding role of the effective stress magnitude in triggering earthquakes, while the impact of change rate of effective stress has not been systematically addressed. In this work, a modified critical stiffness was brought up to investigate the likelihood, impact,and mitigation of induced seismicity during and after hydraulic fracturing by developing a poroelastic model based on rate-and-state fraction law and linear stability analysis. In the new criterion, the change rate of effective stress was considered a key variable to explore the evolution of this criterion and hence the likelihood of instability slip of fault. A coupled fluid flow-deformation model was used to represent the entire hydraulic fracturing process in COMSOL Multiphysics. The possibility of triggering an earthquake throughout the entire hydraulic fracturing process, from fracturing to cessation, was investigated considering different fault locations, orientations, and positions along the fault. The competition between the effects of the magnitude and change rate of effective stress was notable at each fracturing stage. The effective stress magnitude is a significant controlling factor during fracturing events, with the change rate dominating when fracturing is suddenly started or stopped. Instability dominates when the magnitude of the effective stress increases(constant injection at each fracturing stage) and the change rate of effective stress decreases(the injection process is suddenly stopped). Fracturing with a high injection rate, a fault adjacent to the hydraulic fracturing location and the position of the junction between the reservoir and fault are important to reduce the Coulomb failure stress(CFS) and enhance the critical stiffness as the significant disturbance of stresses at these positions in the coupled process. Therefore,notable attention should be given to the injection rate during fracturing, fault position, and position along faults as important considerations to help reduce the potential for induced seismicity. Our model was verified and confirmed using the case of the Longmaxi Formation in the Sichuan Basin, China, in which the reported microseismic data were correlated with high critical stiffness values. This work supplies new thoughts of the seismic risk associated with HF engineering. 展开更多
关键词 hydraulic fracturing Coulomb failure stress Rate-and-state fraction model Linear stability analysis Critical stiffness Seismically induced fault
下载PDF
Hydraulic fracturing behaviors of shale under coupled stress and temperature conditions simulating different burial depths
19
作者 Qin Zhou Zheming Zhu +6 位作者 Wei Liu Huijun Lu Zidong Fan Xiaofang Nie Cunbao Li Jun Wang Li Ren 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期783-797,共15页
Fracture propagation in shale under in situ conditions is a critical but poorly understood mechanical process in hydraulic fracturing for deep shale gas reservoirs. To address this, hydraulic fracturing experiments we... Fracture propagation in shale under in situ conditions is a critical but poorly understood mechanical process in hydraulic fracturing for deep shale gas reservoirs. To address this, hydraulic fracturing experiments were conducted on hollow double-wing crack specimens of the Longmaxi shale under conditions simulating the ground surface(confining pressure σ_(cp)=0, room temperature(Tr)) and at depths of 1600 m(σ_(cp)=40 MPa, Ti=70 ℃) and 3300 m(σ_(cp)=80 MPa, high temperature Ti=110 ℃) in the study area.High in situ stress was found to significantly increase fracture toughness through constrained microcracking and particle frictional bridging mechanisms. Increasing the temperature enhances rather than weakens the fracture resistance because it increases the grain debonding length, which dissipates more plastic energy and enlarges grains to close microdefects and generate compressive stress to inhibit microcracking. Interestingly, the fracture toughness anisotropy in the shale was found to be nearly constant across burial depths, despite reported variations with increasing confining pressure. Heated water was not found to be as important as the in situ environment in influencing shale fracture. These findings emphasize the need to test the fracture toughness of deep shales under coupled in situ stress and temperature conditions rather than focusing on either in situ stress or temperature alone. 展开更多
关键词 hydraulic fracturing Fracture toughness SHALE ANISOTROPY Deep rock mechanics
下载PDF
Effect mechanism of seepage force on the hydraulic fracture propagation
20
作者 Haiyang Wang Desheng Zhou +1 位作者 Yi Zou Peng Zheng 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期223-240,共18页
The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a not... The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a notable influence on rock deformation and failure,its effect on hydraulic fracture(HF)propagation remains ambiguous.Therefore,in this study,we improved a traditional fluid–solid coupling method by incorporating the role of seepage force during the fracturing fluid seepage,using the discrete element method.First,we validated the simulation results of the improved method by comparing them with an analytical solution of the seepage force and published experimental results.Next,we conducted numerical simulations in both homogeneous and heterogeneous sandstone formations to investigate the influence of seepage force on HF propagation.Our results indicate that fluid viscosity has a greater impact on the magnitude and extent of seepage force compared to injection rate,and that lower viscosity and injection rate correspond to shorter hydraulic fracture lengths.Furthermore,seepage force influences the direction of HF propagation,causing HFs to deflect towards the side of the reservoir with weaker cementation and higher permeability. 展开更多
关键词 hydraulic fracturing Seepage force Fracture propagation Discrete element method Reservoir heterogeneity
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部