期刊文献+
共找到961篇文章
< 1 2 49 >
每页显示 20 50 100
Nonlinear Static and Dynamic Stiffness Characteristics of Support Hydraulic System of TBM 被引量:3
1
作者 Jianfeng Tao Junbo Lei +1 位作者 Chengliang Liu Wei Yuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期26-34,共9页
Full-face hard rock tunnel boring machines(TBM)are essential equipment in highway and railway tunnel engineering construction.During the tunneling process,TBM have serious vibrations,which can damage some of its key c... Full-face hard rock tunnel boring machines(TBM)are essential equipment in highway and railway tunnel engineering construction.During the tunneling process,TBM have serious vibrations,which can damage some of its key components.The support system,an important part of TBM,is one path through which vibrational energy from the cutter head is transmitted.To reduce the vibration of support systems of TBM during the excavation process,based on the structural features of the support hydraulic system,a nonlinear dynamical model of support hydraulic systems of TBM is established.The influences of the component structure parameters and operating conditions parameters on the stiffness characteristics of the support hydraulic system are analyzed.The analysis results indicate that the static stiffness of the support hydraulic system consists of an increase stage,stable stage and decrease stage.The static stiffness value increases with an increase in the clearances.The pre-compression length of the spring in the relief valve a ects the range of the stable stage of the static stiffness,and it does not a ect the static stiffness value.The dynamic stiffness of the support hydraulic system consists of a U-shape and reverse U-shape.The bottom value of the U-shape increases with the amplitude and frequency of the external force acting on the cylinder body,however,the top value of the reverse U-shape remains constant.This study instructs how to design the support hydraulic system of TBM. 展开更多
关键词 Tunnel boring machine Support hydraulic system Nonlinear model Static stiffness characteristics Dynamic stiffness characteristics
下载PDF
RESEARCH OF THE DYNAMIC CHARACTERISTICS ON A NEW HYDRAULIC SYSTEM OF ELECTRO-HYDRAULIC HAMMER 被引量:9
2
作者 Li Yongtang Lei Bufang Department of Mechanical Engineering,Taiyuan Heavy Machinery Institute Shi Enxiu Xi’an University of Science and Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第2期171-174,共4页
A new typed hydraulic system of electro hydraulic hammer is researched and developed By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed T... A new typed hydraulic system of electro hydraulic hammer is researched and developed By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed The experimental research which is emphasized on the blowing stroke is also performed It is proved from the result of simulation and experiment that this new hydraulic system possesses such advantages as simplification of structure,flexibleness of operation and reliability of working Especially it possesses better dynamic 展开更多
关键词 Electro hydraulic hammer hydraulic system Dynamic characteristics Simulation
下载PDF
Petri net model for diagnosis of permanent faults of a hydraulic system
3
作者 张博 窦丽华 +1 位作者 马韬 李鹏 《Journal of Beijing Institute of Technology》 EI CAS 2011年第2期227-232,共6页
Petri net model is applied to diagnose the permanent fault of hydraulic system within the framework of interpreted Petri net. The permanent fault is described as redundant structure of the model. A definition and a th... Petri net model is applied to diagnose the permanent fault of hydraulic system within the framework of interpreted Petri net. The permanent fault is described as redundant structure of the model. A definition and a theorem are proposed to determine the diagnosability of the hydraulic system. The relations bwtween the diagnosability and other structure properties are also discussed. An example of actual hydraulic system is presented and its permanent fault can be diagnosed by the proposed method efficiently. 展开更多
关键词 fault diagnosis Petri nets hydraulic system DIAGNOSABILITY
下载PDF
Reliability Analysis of Heavy-Duty CNC Machine Hydraulic System Based on Fuzzy Goal Oriented Method
4
作者 姜梅 晏晶 +2 位作者 李贺 杨圆鉴 彭卫文 《Journal of Donghua University(English Edition)》 EI CAS 2015年第6期901-905,共5页
There is a common sense that heavy-duty CNC machine strongly depends on its foundation and can be easily affected by many factors.Hydraulic system,the most important part in CNC machine,is a complex and multi-loop sys... There is a common sense that heavy-duty CNC machine strongly depends on its foundation and can be easily affected by many factors.Hydraulic system,the most important part in CNC machine,is a complex and multi-loop system.In order to make up for the shortcomings of traditional fault tree analysis method and traditional GO method,the most effective method named fuzzy GO method is proposed to analyze the reliability of hydraulic system.And then some ideas are provided for system reliability assessment,fault diagnosis and maintenance by qualitative and quantitative analysis. 展开更多
关键词 fuzzy GO method fuzzy number heavy-duty CNC machine hydraulic system
下载PDF
Heat Transfer Process of Bubble during the Occurrence of Cavitation in Hydraulic System
5
作者 姜继海 张健 +2 位作者 李艳杰 罗念宁 于安才 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期229-234,共6页
Thermal characteristic of cavitation has great influence on the process of occurrence,development and collapse of bubble in hydraulic system. By choosing the stage of bubble growth as the research object,combining wit... Thermal characteristic of cavitation has great influence on the process of occurrence,development and collapse of bubble in hydraulic system. By choosing the stage of bubble growth as the research object,combining with the characteristic of the process of bubble occurrence and development in hydraulic system, and ignoring the impact of thermal radiation,the heat transfer situation of bubble growth was analyzed under appropriate assumptions of thermodynamic conditions in the bubble generation and development process. The mathematical expression of the temperature change of bubble was deduced using thermodynamic principle. Through combining the expression with classic Rayleigh-Plesset Equation,numerical calculation was carried out and the temperature variation over time( or bubble radius) was obtained. The influences of convective heat transfer coefficient of bubble and polytropic exponent on the thermodynamic process of bubble were analyzed. Finally,the thermal characteristic of bubble growth after cavitation occurrence was summarized. 展开更多
关键词 hydraulic system CAVITATION convective heat transfer coefficient of bubble polytropic exponent THERMODYNAMICS
下载PDF
Reliability-based maintenance scheduling of hydraulic system of rotary drilling machines 被引量:4
6
作者 Mohammad Javad Rahimdel Mohammad Ataei +1 位作者 Reza Khalokakaei Seyed Hadi Hoseinie 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期771-775,共5页
Hydraulic system has a critical and important role in drilling machines.Any failure in this system leads to problems in power system and machine operation.Since the failure cannot be prevented entirely,it is important... Hydraulic system has a critical and important role in drilling machines.Any failure in this system leads to problems in power system and machine operation.Since the failure cannot be prevented entirely,it is important to minimize its probability.Reliability is one of the most effcient and important method to study safe operation probability of hydraulic systems.In this research,the reliability of hydraulic system of four rotary drilling machines in Sarcheshmeh Copper Mine in Iran has been analyzed.The data analysis shows that the time between failures(TBF)of Machines A and C obey the Weibull(2P)and Weibull(3P)distribution,respectively.Also,the TBF of Machines B and D obey the lognormal distribution.With regard to reliability plots of hydraulic systems,preventive reliability-based maintenance time intervals for 80%reliability levels for machines in this system are 10 h. 展开更多
关键词 RELIABILITY DRILLING hydraulic Maintenance
下载PDF
Effects of shifting time on pressure impact in hydraulic systems 被引量:5
7
作者 ZHU Zhen-cai CHEN Guo-an 《Journal of Central South University of Technology》 2005年第z1期217-221,共5页
The limitations in existing measures for absorbing pressure impact in hydraulic systems were summarized in this paper. Based on the forming principle of the oil in a hydrostatic closed pressure chamber, the underlying... The limitations in existing measures for absorbing pressure impact in hydraulic systems were summarized in this paper. Based on the forming principle of the oil in a hydrostatic closed pressure chamber, the underlying reasons of the pressure impact were analyzed theoretically, the intrinsic laws that the extent of the pressure impact in hydraulic oil lines are affected by some factors, such as oil elastic modulus, oil line's geometrical volume, and changing rate of oil volume versus time etc, were discussed. Experimental investigations into pressure impact in all pressure chambers because of shifting were conducted under different working conditions by employing a special experimental system. The effects of shifting time on pressure impact were studied. A new concept with universal meaning, i.e. optimal shifting time, and its characterizing parameter and the methods of shifting at optimal shifting time were also proposed. The results show that shifting time lag △t is of rationality and maneuverablility. The higher the working pressure, the shorter the shifting time. 展开更多
关键词 hydraulic system SHIFTING TIME PRESSURE impact EXPERIMENT LAW
下载PDF
Co-simulation of a quadruped robot's mechanical and hydraulic systems based on ADAMS and AMESim 被引量:2
8
作者 韩宝玲 司世才 +2 位作者 罗庆生 肖大华 牛锴 《Journal of Beijing Institute of Technology》 EI CAS 2016年第2期218-224,共7页
In order to observe the change and fluctuation in flow and pressure of a hydraulic quadruped robot's hydraulic system when the robot walks on trot gait,a co-simulation method based on ADAMS and AMESim is proposed.... In order to observe the change and fluctuation in flow and pressure of a hydraulic quadruped robot's hydraulic system when the robot walks on trot gait,a co-simulation method based on ADAMS and AMESim is proposed. Firstly,the change rule in each swing angle of the hydraulic quadruped robot's four legs is analyzed and converted to the displacement change of the hydraulic cylinder by calculating their geometric relationship.Secondly,the robot's dynamic model is built in ADAMS and its hydraulic and control system models are built in AMESim. The displacement change of the hydraulic cylinder in the hydraulic system is used as the driving function of the dynamics model in ADAMS,and the driving force of the dynamics model is used as the loads of the hydraulic system in AMESim. By introducing the PID closed-loop control in the control system,the co-simulation between hydraulic system and mechanical system is implemented. Finally,the curve of hydraulic cylinders' loads,flow and pressure are analyzed and the results show that they fluctuate highly in accordance with the real situation. The study provides data support for the development of a hydraulic quadruped robot's physical prototype. 展开更多
关键词 hydraulic QUADRUPED ROBOT CO-SIMULATION hydraulic system fluctuate
下载PDF
Reliability Analysis of Hydraulic System of Anchor Drilling Rigs Based on Fuzzy Fault Tree 被引量:1
9
作者 李庆洋 孙洪华 陈旭东 《Journal of Donghua University(English Edition)》 EI CAS 2019年第3期227-233,共7页
Considering that the fault phenomenon of the power head cannot feed under actual working conditions,fuzzy mathematics theory is introduced into fault tree analysis(FTA)according to the structural characteristics of hy... Considering that the fault phenomenon of the power head cannot feed under actual working conditions,fuzzy mathematics theory is introduced into fault tree analysis(FTA)according to the structural characteristics of hydraulic system of anchor drilling rigs in this paper.The triangle fuzzy number is used to describe the fault probability of the basic event,the fuzzy probability importance of the basic event is calculated,and the basic events are sorted by comparing the magnitude of the fuzzy probability importance.The results show that the gear wear of auxiliary oil pump,suction phenomena of gear pump,wear and leakage of No.1 and No.3 pumps are the key factors leading to power head failure.In order to improve the overall reliability of the hydraulic system,fault diagnosis and maintenance decisions provide a theoretical basis. 展开更多
关键词 hydraulic system FUZZY fault tree TRIANGLE FUZZY number FUZZY probability IMPORTANCE
下载PDF
Analysis and verification of gas content and pressure change rate characteristics in hydraulic system
10
作者 韩贺永 Liu Yuan +2 位作者 Qin Lixia Wang Kai Peng Huayu 《High Technology Letters》 EI CAS 2019年第3期326-333,共8页
Gas content of the hydraulic system directly affects the rate of pressure change of the hydraulic system. The purpose of this paper is to establish a mathematical model of oil gas content, hydraulic system pressure an... Gas content of the hydraulic system directly affects the rate of pressure change of the hydraulic system. The purpose of this paper is to establish a mathematical model of oil gas content, hydraulic system pressure and pressure rise rate, obtain corresponding oil pressure value when the pressure rise rate of different gas content is maximum, and verify the accuracy of this conclusion by the FLUENT simulation software. On this basis, a rapid pressure building device of the hydraulic system is developed and designed. The above oil pressure value is used as the working cut-off pressure of the rapid pressure building device, and then the hydraulic oil pump continues to pressurize to the highest working pressure required by the system. The research content can replace the hydraulic system from the initial low pressure to the rapid pressure build-up of the oil, thus increasing the construction pressure of the hydraulic system. The research results show that the rapid pressure building device effectively reduces the time for the hydraulic system to establish pressure. Through the analysis of theoretical derivation and the collected experimental data, the error is about 5.9%, which verifies the correctness of the theoretical formula. 展开更多
关键词 hydraulic system gas content ESTABLISHMENT of PRESSURE rate RAPID PRESSURE BUILDING device PRESSURE BUILDING time
下载PDF
Analysis of energy consumption characteristics of hydraulic system for wrecker truck based on CPR
11
作者 晁智强 Ning Chuming +2 位作者 Shen Wei Li Huaying Han Shousong 《High Technology Letters》 EI CAS 2018年第1期82-89,共8页
In order to solve problems associated with high heat production,high-energy consumption and low efficiency for the hydraulic system of the working device in a wrecker truck,a hydraulic energysaving system based on com... In order to solve problems associated with high heat production,high-energy consumption and low efficiency for the hydraulic system of the working device in a wrecker truck,a hydraulic energysaving system based on common pressure rail( CPR) is proposed. A hydraulic transformer is utilized to control the actuators by analyzing energy-consumption characteristics of valve controlled hydraulic system in a wrecker truck. By analyzing the energy-saving principle of a hydraulic energy-saving system,a relevant mathematical model is established. A comparison is performed between the energysaving hydraulic system and valve controlled hydraulic system in a wrecker truck within the same work period for operating efficiency and energy consumption. Results show that hydraulic energysaving system of the wrecker truck has better controlling performance and efficiency of about 18%higher than the valve controlled hydraulic system. Energy-saving ratio for total energy consumption in this system reaches 51. 46%,demonstrating energy-saving effect of the system. 展开更多
关键词 common pressure RAIL (CPR) hydraulic transformer energy SAVING wreckertruck
下载PDF
Proposal of a Component to Restrict Dust from Entering an Oil Hydraulic System through an Oil Hydraulic Cylinder
12
作者 Etinot Betty Yasuo Sakurai 《Journal of Mechanics Engineering and Automation》 2019年第5期152-159,共8页
This research proposes a component to restrict dust from entering an oil hydraulic system through the rod-seal clearance of an oil hydraulic cylinder.The oil hydraulic cylinder as one of main parts of the hydraulic sy... This research proposes a component to restrict dust from entering an oil hydraulic system through the rod-seal clearance of an oil hydraulic cylinder.The oil hydraulic cylinder as one of main parts of the hydraulic system,controls position of load by reciprocation.For example,on construction machines such as excavators and graders,the cylinder controls position of folk lift,crane and bucket.However,during operation,dust enters the cylinder,wears seals,causes fluid degradation and affects lubrication of valves,pumps and other parts of hydraulic system.This increases breakdown rate of cylinder and entire system.Thus,it seems necessary to reduce on intrusion of dust into the system via the hydraulic cylinder.In this research,we made an experimental apparatus to simulate intrusion of the dust into system.Results proved that the apparatus is a suitable simulator to realize the intrusion.The proposed component to restrict dust from entering cylinder was fabricated and its performance tested when inserted with various elastic rings.The component gave tremendous results when inserted with O-ring seal and a plastic nylon washer,and can be retrofitted on new and old hydraulic cylinders.It is an appropriate technology especially in developing countries where dust is still a major concern. 展开更多
关键词 Appropriate technology oil-hydraulic system OIL hydraulic cylinder rod-seal clearance COMPONENT to restrict DUST
下载PDF
Experimental Verification of Fault Predictions in High Pressure Hydraulic Systems
13
作者 P. Athanasatos D. Koulocheris +1 位作者 Th. Costopoulos V. Spitas 《Modern Mechanical Engineering》 2014年第2期67-83,共17页
In this paper a model of a high pressure hydraulic system was developed to simulate the effect of increased internal leakages inside the hydraulic cylinder and the 4/2 way directional control valve and to calculate th... In this paper a model of a high pressure hydraulic system was developed to simulate the effect of increased internal leakages inside the hydraulic cylinder and the 4/2 way directional control valve and to calculate the main parameters of the hydraulic system under various loads through the use of leakage-simulating throttle valves. After the completion of modeling, the throttle valves that simulate the internal leakages were calibrated and a number of test runs were performed for the cases of normal operation and the operation with increased internal leakages. The theoretical predictions were compared against the experimental results from an actual hydraulic test platform installed in the laboratory. In all cases, modeling and experimental data curves correlate very well in form, magnitude and response times for all the system’s main parameters. This proves that the present modeling can be used to accurately predict various faults in hydraulic systems, and can thus be used for proactive fault finding in many cases, especially when the defective component is not easily detected and obvious at first sight. 展开更多
关键词 hydraulic systems CYLINDER Directional Control VALVE FAULT Prediction Internal LEAKAGE
下载PDF
Pumping-induced Well Hydraulics and Groundwater Budget in a Leaky Aquifer System with Vertical Heterogeneity in Aquitard Hydraulic Properties
14
作者 ZHUANG Chao LÜChenyang +5 位作者 YAN Long LI Yabing ZHOU Zhifang WANG Jinguo DOU Zhi Walter A.ILLMAN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期477-490,共14页
In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is... In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is derived for pumping-induced well hydraulics and groundwater budget with consideration of vertical heterogeneity in aquitard hydraulic conductivity(K)and specific storage(S_(s)).The proposed new solution is innovative in its partitioning of the aquitard into multiple homogeneous sub-layers to enable consideration of various forms of vertically heterogeneous K or S_(s).Two scenarios of analytical investigations are explored:one is the presence of aquitard interlayers with distinct K or S_(s) values,a common field-scale occurrence;another is an exponentially depth-decaying aquitard S_(s),a regional-scale phenomenon supported by statistical analysis.Analytical investigations reveal that a low-K interlayer can significantly increase aquifer drawdown and enhance aquifer/aquitard depletion;a high-S_(s) interlayer can noticeably reduce aquifer drawdown and increase aquitard depletion.Locations of low-K or high-S_(s) interlayers also significantly impact well hydraulics and groundwater budget.In the context of an exponentially depth-decaying aquitard S_(s),a larger decay exponent can enhance aquifer drawdown.When using current models with a vertically homogeneous aquitard,half the sum of the geometric and harmonic means of exponentially depth-decaying aquitard S_(s) should be used to calculate aquitard depletion and unconfined aquifer leakage. 展开更多
关键词 HYDROGEOLOGY AQUITARD vertical heterogeneity semi-analytical solution well hydraulics groundwater budget
下载PDF
Backstepping Sliding Mode Control Based on Extended State Observer for Hydraulic Servo System 被引量:1
15
作者 Zhenshuai Wan Yu Fu +1 位作者 Chong Liu Longwang Yue 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3565-3581,共17页
Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertaint... Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme. 展开更多
关键词 hydraulic servo system nonlinear behaviors modeling uncertainties backstepping control sliding mode control extended state observer
下载PDF
Dynamic Simulation and Test Verifcation of Hydraulic Automatic Tensioner for an Engine Timing Chain Drive System
16
作者 Zengming Feng Jinxing Yang Fei Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期291-303,共13页
As a fundamental component of an automobile engine’s timing chain drive system, the hydraulic automatic tensioner signifcantly enhances fuel economy while minimizing system vibrations and noise. However, there is a n... As a fundamental component of an automobile engine’s timing chain drive system, the hydraulic automatic tensioner signifcantly enhances fuel economy while minimizing system vibrations and noise. However, there is a noticeable lack of research on automatic hydraulic tensioners. This study presents a comprehensive calculation approach for the principal parameters of a hydraulic automatic tensioner. An efective method, grounded in hydraulics and multibody dynamics, was introduced for estimating the dynamic response of such a tensioner. The simulation model developed for the hydraulic tensioner is characterized by its rapid dynamic response, consistent operation, and high accuracy. The dynamic behavior of the tensioner was analyzed under varying boundary conditions, using sinusoidal signal excitation. It was observed that the maximum damping force increases with a decreasing leakage gap. Conversely, an increase in oil temperature or air content leads to a decrease in the maximum damping force. The reaction forces derived from these calculations align well with experimental results. This calculation and simulation approach ofers considerable value for the design of innovative hydraulic tensioners. It not only streamlines the design phase, minimizes the number of trials, and reduces product costs, but also provides robust insights for evaluating the performance of hydraulic tensioners. 展开更多
关键词 hydraulic automatic tensioner Timing chain Leakage gap Hysteresis curve
下载PDF
Adjacent mode resonance of a hydraulic pipe system consisting of parallel pipes coupled at middle points
17
作者 Xin FAN Changan ZHU +1 位作者 Xiaoye MAO Hu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期363-380,共18页
The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pi... The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system. 展开更多
关键词 hydraulic pipe system coupling vibration adjacent mode coupling parallel pipe conveying fluid harmonic balance method(HBM)
下载PDF
Stress tensor determination by modified hydraulic tests on pre-existing fractures:Method and stress constraints
18
作者 Guiyun Gao Chenghu Wang Ke Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1637-1648,共12页
The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determinati... The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole. 展开更多
关键词 Stress tensor hydraulic tests on pre-existing fractures Mean stress Stress constraint hydraulic fracturing
下载PDF
Spatiotemporal variations of sand hydraulic conductivity by microbial application methods
19
作者 Viroon Kamchoom Thiti Khattiwong +2 位作者 Treesukon Treebupachatsakul Suraparb Keawsawasvong Anthony Kwan Leung 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期268-278,共11页
The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prep... The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prepared using three different methods,i.e.injecting,mixing,and pouring a given microbial so-lution onto compacted sand specimens.The hydraulic conductivity was measured by constant-head tests,while any soil microstructural changes due to addition of the microbes were observed by scan-ning electron microscope(SEM)and mercury intrusion porosimetry(MIP)tests.The amount of dextran concentration produced by microbes in each type of specimen was quantified by a refractometer.Results show that dextran production increased exponentially after 5-7 d of microbial settling with the supply of culture medium.The injection and mixing methods resulted in a similar amount and uniform dis-tribution of dextran in the specimens.The pouring method,however,produced a nonuniform distri-bution,with a higher concentration near the specimen surface.As the supply of culture medium discontinued,the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign colonies.Average dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially,due to the clogging of large soil pores by dextran.The hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent. 展开更多
关键词 Bio-mediated soil DEXTRAN hydraulic conductivity Leuconostoc mesenteroides Microbial application MICROSTRUCTURE
下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs
20
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir Fracture conductivity Fracturing fluid hydraulic fracturing Reservoir damage
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部