期刊文献+
共找到942篇文章
< 1 2 48 >
每页显示 20 50 100
Genesis of Neogene Formation Waters in the Central Qaidam Basin:Clues from Hydrochemistry and Stable D-O-S-Sr Isotopes
1
作者 HAN Guang PAN Tong +4 位作者 LI Qingkuan FAN Qishun HU Yan LIU Jiubo ZHANG Xiying 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第6期1801-1813,共13页
Geological explorations have revealed plentiful Neogene formation waters in anticlines in the central Qaidam Basin(QB).However,the hydrochemistry and origin of these waters are obscure.In this study,the hydrochemistry... Geological explorations have revealed plentiful Neogene formation waters in anticlines in the central Qaidam Basin(QB).However,the hydrochemistry and origin of these waters are obscure.In this study,the hydrochemistry and DO-S-Sr isotopes of these formation waters were determined to study their origin and evolution.The formation waters are enriched in Na-Ca-Cl,and depleted in Mg-K-SO4-HCO3ions with elevated Li-B-Br-Sr elements.The D-O isotopes prove that the formation waters originated from weak-evaporated meteoric waters,and experienced water-rock interactions.Ion comparisons and Caexcess-Nadeficitdiagrams suggest that solute sources of these waters include evaporite dissolution,waterrock interaction,and minor residual lake brines.Bacterial sulfate reduction and water-rock interactions are supported by the high S-Sr isotopes.The enriched Li-B-Br-Sr concentrations of these waters are in accord with the high geochemical background values of the QB.Regarding the genesis of the formation waters,it can be concluded that meteoric waters from the southern Kunlun Mountains were discharged into the basin,weakly evaporated,and then infiltrated into the Neogene strata through faults leaching the soluble ions and mixing with residual lake brines,and all experienced water-rock interactions and a sulphate reduction process. 展开更多
关键词 hydrochemistry brine resources lake/meteoric waters D-O-S-Sr isotopes Miocene-Pliocene Qaidam Basin
下载PDF
Palaeoclihlatic Indicators of China's Quaternary Saline Lake Sediments and Hydrochemistry 被引量:17
2
作者 ZHENG Mianping, ZHAO Yuanyi and LIU JunyingResearch & Development Center of Saline Lake and Epithermal Deposits,Chinese Academy of Geological Sciences, Beijing 100037 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期259-265,共7页
In this paper the authors classify saline lake sediments into the cold, warm and eurythermal phases, reveal the consistency between the zoning of hydrochemical types of modern saline lake water and climatic zoning and... In this paper the authors classify saline lake sediments into the cold, warm and eurythermal phases, reveal the consistency between the zoning of hydrochemical types of modern saline lake water and climatic zoning and give climatic parameters under the conditions of typical cold phase (mirabilite and natron), warm phase (thenar-dite) and slightly warm phase (bloedite) saline lake deposition. 展开更多
关键词 SALINE LAKE SEDIMENTS hydrochemistry palaeoclimatic indicator QUATERNARY
下载PDF
Diurnal and seasonal variation of glacier meltwater hydrochemistry in Qiyi glacierized catchment in Qilian Mountains, Northwest China: implication for chemical weathering 被引量:1
3
作者 WU Xiao-bo 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1035-1045,共11页
In glacierized catchments, glacier runoff typically shows a strong diurnal cycle in the ablation season(June-September). To elucidate the effect of these processes on the chemical weathering, fresh snowfall and water ... In glacierized catchments, glacier runoff typically shows a strong diurnal cycle in the ablation season(June-September). To elucidate the effect of these processes on the chemical weathering, fresh snowfall and water samples were collected and studied from the supraglacial river, proglacial river,and gauging site in Qiyi glacierized catchment Qilian Mountains, Northwestern China, in the summer of2011. The pH and electronic conductivity(EC) were determined in the field, and the concentrations of major ions(Na^+, K^+, Mg^(2+), Ca^(2+), Cl^-, SO_4^(2-), NO_3^-) were measured. The results indicated that EC linearly increased with increasing distance from the glacial snout, and the concentrations of major ions increased with increasing water-rock interaction time. Along the flow path of the glacier runoff, Na^+ and Cl^-are more concentrated than other ions in the supraglacial river while Mg^(2+) and SO_4^(2-)are more concentrated than other ions at the gauging site. The discharge, pH, EC,and the concentrations of major ions exhibited significant diurnal variation along the flow path. On the other hand, the amplitude of variation diminished from upstream to downstream along the flow path.The chemical weathering rate(Na^++K^++Mg^(2+)+Ca^(2+))was determined to be 10.9 t/yr/km^2. Moreover,further research indicated that the sampling method influenced the assessment of chemical weathering rates. When the sample was collected randomly in one diurnal cycle of hydrography, the estimated ionic flux could deviate-47%~73% based on estimated hourly data. In contrast, if three samples were collected at peak, base flow and the discharge decreasing rate starts to slow down in one diurnal cycle of hydrography, respectively, the deviation would be less than 15%. The smaller the diurnal variation of discharge, the smaller deviation calculated. 展开更多
关键词 DIURNAL variation hydrochemistry Chemical WEATHERING rate
原文传递
INVESTIGATION ON FUNDAMENTAL CHARACTERISTICS OF HYDROCHEMISTRY IN HEAD AREA OF THE CANGJIANG RIVER
4
作者 邓伟 《Chinese Geographical Science》 SCIE CSCD 1991年第3期78-89,共12页
The results of water sample analyses and investigation in the head area of the Changjiang River reveal that the characteristics of hydrochemistry of the river vary with drainage basins. In the drainage basin of the Tu... The results of water sample analyses and investigation in the head area of the Changjiang River reveal that the characteristics of hydrochemistry of the river vary with drainage basins. In the drainage basin of the Tuotuo River, the mineral concentration of water is generally high, ions of Cl and Na+ are obviously dominant. The water tends to be salty, and the type of hydrochemistry is rather complex. In the drainage basin of the Dam River, the mineral concentration is mainly in a low and middle level, ions of HCO3- and Ca2+ are higher than others, and the type of hydrochemistry is relatively simple. The ground water in deep layers plays an important role in recharging surface water, and the stable recharging results in little change in chemical composition of surface water. 展开更多
关键词 the HEAD area of the CHANGJIANG RIVER hydrochemistry FUNDAMENTAL CHARACTERISTICS
下载PDF
Hydrochemistry of the meltwater streams on Fildes Peninsula, King George Island, Antarctica
5
作者 叶利萍 张瑞峰 +2 位作者 孙启振 金杰 张经 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第6期2181-2193,共13页
King George Island, situated in the South Shetland Islands archipelago, is one of the most visited sites in Antarctica. Antarctica attracts much attention because it is one of the most sensitive areas under the influe... King George Island, situated in the South Shetland Islands archipelago, is one of the most visited sites in Antarctica. Antarctica attracts much attention because it is one of the most sensitive areas under the influence of global warming. To understand its hydrochemistry characteristics, we collected various types of water samples, including samples from streams, meltwaters, ground waters, snow and ice from around the Great Wall Station, Fildes Peninsula, King George Island, from January to February, 2015. Major ions, alkalinities, silicate, pH, dissolved oxygen, temperature, and electric conductivities were measured. Several approaches were applied to identify processes that af fect the hydrochemistry on Fildes Peninsula, including ternary diagrams, principal components analysis and cluster analysis. Our data suggest that atmospheric seasalt deposition is the main factor controlling the hydrochemistry on Fildes Peninsula. After atmospheric influences were corrected for seasalt, we defined the weathering of local rocks to be another important factor on the Peninsula's hydrochemistry. Processes such as Ca dissolution from the Ca-bearing basalt, Si loss through secondary mineralization and biological uptake influence the chemical composition of runof fs on the peninsula. Cluster analysis identified 4 groups of streams based on their hydrochemical features, which reflect their original weathering characters under icecap and the combined effects with melt snow, biological activity and the anthropogenic input. 展开更多
关键词 hydrochemistry runoffs seasalt water-rock INTERACTION Fildes PENINSULA ANTARCTICA
下载PDF
Hydrochemistry of Rain Water and Atmospheric Pollution in Baghdad,Iraq
6
作者 Salih Muhammad Awadh 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期114-114,共1页
The atmospheric pollution in Baghdad was investigated by using rainwater as a media for monitoring of pollution and also compared with the atmosphere pollution at reference stations of Al-Sulaimaniya in north of Iraq ... The atmospheric pollution in Baghdad was investigated by using rainwater as a media for monitoring of pollution and also compared with the atmosphere pollution at reference stations of Al-Sulaimaniya in north of Iraq and Al-Rutbah in Western Desert of Iraq. Rainwater sampling carried out at period extended from Nov.2007 to April 2008.Thirty five samples of rainwater were collected at seven monitoring 展开更多
关键词 RAIN WATER POLLUTION hydrochemistry ATMOSPHERE Baghdad
下载PDF
Hydrochemistry as Indicator to Select the Suitable Locations for Water Storage in Tharthar Valley, Al-Jazira Area, Iraq
7
作者 Sabbar Abdullah Salih Lafta Salman Kadim Manzor Qadir 《Journal of Water Resource and Protection》 2012年第8期648-656,共9页
Four locations were chosen according to geomorphologic and engineering criterion to store the water on the midstream of Tharthar valley, water samples were collected from the four locations to evaluate the hydrochemic... Four locations were chosen according to geomorphologic and engineering criterion to store the water on the midstream of Tharthar valley, water samples were collected from the four locations to evaluate the hydrochemical properties as indicator to select the more suitable location, these locations are Hatra, Abu-Hamam, Tlol Al-Baj and Al-Sukkariah from the north to the south respectively. Also, the groundwater samples were collected from two shallow wells on the banks. The samples were analyzed to determine the concentrations of most common anions and cations in the water Ca2+, Mg2+, Na+, K+, CO32-, HCO3-, Cl–, SO42+. Also, pH, EC and TDS were measured. The results reflect high variations in concentrations of the soluble materials, the concentrations of these components are highly increased in locations of Tlol Al-Baj and Al-Sukkariah in comparison with the locations of Hatra and Abu-Hamam. The variation in geology of the area along the valley was represented a main role on the quality of water. These results can help to select the suitable locations of small dam (dams) to store the water in the valley and prevent the problem of salinity. According to the results, the northern part of midstream (north of Abu-Hamam) is suitable for water storage and the dam construction. While the locations of the downstream enriched by local sources of salts. 展开更多
关键词 Tharthar DAM hydrochemistry SALINITY
下载PDF
Hydrochemistry and Quality Assessment of Water in Tannur Dam, Southern Jordan
8
作者 Omar A. Al-Khashman Hani M. Alnawafleh 《Open Journal of Modern Hydrology》 2020年第1期1-19,共19页
The study was undertaken to assess the physicochemical and chemical quality of the Tannur dam water in southern Jordan. The water samples were collected in two intervals the first during May 2015 and the second during... The study was undertaken to assess the physicochemical and chemical quality of the Tannur dam water in southern Jordan. The water samples were collected in two intervals the first during May 2015 and the second during September 2015. All samples were analyzed for temperature, conductivity, dissolved oxygen, pH, major cations (Ca2+, Mg2+, K+, Na+), and major anions (Cl-, NO3-, HCO3- and SO42-). The hydrogeochemical analyses of thirty-six water samples were used to determine the properties and type of water in the Tannur dam. The ion concentration in the water samples was from dissolution of carbonate rocks and ion exchange processes in clay. The general chemistry of water samples was typical alkaline earth waters with prevailing bicarbonate chloride. The PHREEQC Hydrogeochemical modeling was used to obtain the saturation indices of specific mineral phases, which might be related to interaction with water and aquifer, and to identify the chemical species of the dissolved ions. Calcite and dolomite solubility were assessed in terms of saturation index where they show positive values indication oversaturated SI > 0. The hydrogeochemistry behavior is rather complicated and is affected by anthropogenic and natural sources. The positive correlation values between various parameters indicate that most of ions result from same lithological sources. The abundance of the major ions in water samples is in the following order: HCO3-> Ca2+ > Cl- > NO3- > SO42-) > Na+ > Mg2+ > K+. Water samples of the Tannur dam are generally very hard, high to very high saline and medium alkaline in nature. High total hardness (TH) and total dissolved solids (TDS) in some samples identify the permissible for domestic and irrigation purposes. According to the residual sodium carbonate, SAR and conductivity values, the studied water is suitable for agricultural purposes. 展开更多
关键词 hydrochemistry Tannur DAM JORDAN SATURATION Indices WATER Quality
下载PDF
Hydrochemistry of Umm Er Radhuma Groundwater
9
作者 Muhammad Gomaah 《Journal of Geoscience and Environment Protection》 2021年第4期128-146,共19页
Umm Er Radhuma Aquifer (UER) is the most important groundwater aquifer in Saudi Arabia, extending over 1.6 M<span style="font-size:10.5pt;font-family:;" "=""><span style="color:#... Umm Er Radhuma Aquifer (UER) is the most important groundwater aquifer in Saudi Arabia, extending over 1.6 M<span style="font-size:10.5pt;font-family:;" "=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span></span></span>km<sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> in the eastern part of the Arabian Peninsula, forming the main aquifer throughout the Rub’ Al-Khali (RAK). </span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">Groundwater salinity increased from west to east, reaching more than 27,000 mg/L near the border with the United Arab Emirates, where a Na</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;">-Ca</span><sup><span style="font-family:Verdana;">2+</span></sup><span style="font-family:Verdana;">Cl<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">ˉ</span></span><span style="font-family:Verdana;">-<img src="Edit_c1bbc858-a8a7-45ca-be57-e2bb456cbddb.bmp" alt="" /></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> </span></span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">water type dominated. Gibbs diagrams indicated that the dissolution/precipitation of carbonates and evaporation/precipitation of minerals, especially anhydrite, gypsum, and halite account for the solutes and salinity in groundwater. Most of the samples plot above the 1:1 line of (Ca</span><sup><span style="font-family:Verdana;">2+</span></sup><span style="font-family:Verdana;"> + Mg</span><sup><span style="font-family:Verdana;">2+</span></sup><span style="font-family:Verdana;">) against <img src="Edit_5405b197-c8d5-436d-8648-dd95afefb8e6.bmp" alt="" /></span></span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">, indicating other sources of Ca</span><sup><span style="font-family:Verdana;">2+</span></sup><span style="font-family:Verdana;"> and Mg</span><sup><span style="font-family:Verdana;">2+</span></sup><span style="font-family:Verdana;"> in the groundwater along with dolomite and calcium carbonate minerals. Phreeqc model indicated that the main clay minerals are kaolinite and gibbsite which had major effect on the cation exchange process as indicated by the Chloro-Alkaline index (CAI), where most of groundwater samples had values greater than zero which indicated the occurrence of reverse ion exchange between the groundwater and its host aquifer. The water type Na</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;">-Ca</span><sup><span style="font-family:Verdana;">2+</span></sup><span style="font-family:Verdana;">Cl</span><sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">ˉ</span></span></sup><span style="font-family:Verdana;">-<img src="Edit_e8c17a28-24a8-4e14-a615-24c0e0817331.bmp" alt="" /></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">dominated in the eastern part of the aquifer as the anaerobic conditions prevailed and the reduction of sulphate took place.</span></span></span></span> 展开更多
关键词 hydrochemistry Umm Er Radhumma Aquifer GROUNDWATER Water-Rock Interaction
下载PDF
Hydrochemistry of the Mixed Dead Sea-Red Sea Water under Different Impoundment Scenarios as a Time Dependent State
10
作者 J. Abu-Qubu O. Rimawi +2 位作者 A. Anbar T. Alebous Z. S. H. Abu-Hamatteh 《Journal of Geoscience and Environment Protection》 2022年第1期94-108,共15页
The expected water mixing process between Red/Dead Sea water during the proposed conveyance projects is the main target of this research. The project will ensue transporting Red Sea water to recover and maintain certa... The expected water mixing process between Red/Dead Sea water during the proposed conveyance projects is the main target of this research. The project will ensue transporting Red Sea water to recover and maintain certain level of the Dead Sea, mostly will reach <span><span><span style="font-family:;" "=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span></span></span></span><span style="font-family:;" "="">395</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">m. It is found that, the two different water bodies with different EC values or different densities (salinities) are relatively divided by stable plane. This plane is defined as the BARZACH PLANE. In this study, the mixing process occurred between the Red Sea with the Dead Sea waters, located at 20</span><span style="font-family:;" "="">% </span><span style="font-family:;" "="">-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">24% of the Dead Sea column depth based on the Barzach Plane level. During a laboratory experimental work, it is found that the mixed Red/Dead Sea water evaporates in a high rate until certain level where the solution attains oversaturated conditions with different dissolved solids. At this stage, a thin layer of solids suddenly formed and floated at the surface of the dense brine. The salinity of the captured water is so dense that floated salt layer cannot be dissolved. In addition, the formed floated salt layer at the surface prevents the below captured water to evaporate and at this stage, stalactites start to form until the excess dissolved solids are not oversaturated with any mineral.</span> 展开更多
关键词 hydrochemistry Dead Sea Red Sea Brine Water Mixing Process Barzach Plan JORDAN
下载PDF
Sanitary Surveys and Hydrochemistry of Groundwater in Two Urban Towns (Ado-Ekiti and Ijero-Ekiti), Southwestern Nigeria
11
作者 Abel Ojo Talabi Lekan Olatayo Afolagboye +1 位作者 Christopher Ayodele Ajayi Olufunke Kolawole 《Journal of Geoscience and Environment Protection》 2022年第7期159-185,共27页
Groundwater contamination in urban cities is imminent in the phase of increased anthropogenic activities apart from the contribution of geogenic contaminants. This study examined the sanitary surveys and hydrochemistr... Groundwater contamination in urban cities is imminent in the phase of increased anthropogenic activities apart from the contribution of geogenic contaminants. This study examined the sanitary surveys and hydrochemistry of groundwater in Ado-Ekiti and Ijero-Ekiti to establish the contaminants’ sources, decipher the effects of urbanization on population and explain any relationship between the surveys and the groundwater chemistry. Sanitary surveys of 30 randomly selected wells each from Ado-Ekiti and Ijero-Ekiti were executed by administering and processing appropriately designed questionnaires that addressed salient problems of hygiene and sanitation. The results of the surveys were grouped into very high risk, high risk, intermediate risk, and low risk classes. Subsequently, at each location, in situ parameters (temperature (°C), pH and EC (μS/cm)) were measured using a portable Multi-parameter TestrTM 35 Series S/N: 1382654. At each well, water samples were collected into clean polyethylene bottles in triplicates for cation, anions and e-coli evaluations, respectively. Water samples for cations were acidified by adding two drops of concentrated nitric acid. All samples were kept in a refrigerator at a low temperature of about 4°C before being taken to the Federal University of Technology, Akure, for analyses. Ion chromatography was employed for the anions analysis while the cations were determined using an Atomic Absorption Spectrophotometer Buck 210 model. Membrane filter technique was employed for the e-coli estimation. From the results of the hydrochemistry, the Nitrate Pollution Index (NPI) and Modified Nitrate Pollution Index (MNPI) were estimated and classified into;clean unpolluted, light pollution, moderate pollution, significant pollution, very significant pollution waters. Sanitary surveys in the two cities showed that in the very low risk, intermediate and high-risk categories, Ado-Ekiti had 33.33%, 56.67% and 10% representations, while Ijero-Ekiti had 50%, 23.33% and 26.67% representations, respectively. This observation showed that Ado-Ekiti with higher population and humans’ activities compared to Ijero-Ekiti was less susceptible to pollution. Urbanization has no direct effects on sanitary surveys. The pH of wells’ water in Ado-Ekiti ranged from 4.8 - 8.2, EC (μS/cm) from 101 - 1008, while at Ijero-Ekiti, the pH and EC (μS/cm) varied from 2.1 - 13.8 and 80 - 1008 respectively. Ado-Ekiti wells’ water was more acidic than that of Ijero-Ekiti. Chemical concentrations (mg/L) of Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup>, , and Cl<sup>ˉ</sup> of the wells’ water in both cities were within WHO-approved standards for drinking water. However, with average concentrations of 142.17 (mg/L) and 252.71 (mg/L) at Ado-Ekiti and Ijero-Ekiti, respectively, exceeded the standard in many locations. Susceptibility to pollution classification employing TDS, NPI and MNPI showed that Ijero-Ekiti was more susceptible to pollution compared to Ado-Ekiti. This assertion was supported by statistical analysis employing correlation, cluster analysis, and principal component analysis. This study showed that urbanization had no direct effects on sanitary surveys and groundwater quality. Pollution of wells’ water in the two cities was, mainly from anthropogenic activities. However, Ijero-Ekiti, with significant anthropogenic activities, had its wells’ water more susceptible to pollution. Sanitary surveys are a complementary method to water quality monitoring. 展开更多
关键词 URBANIZATION Groundwater Quality Geogenic Contaminants Sanitary Surveys hydrochemistry Nitrate Pollution Index
下载PDF
Reassessing Groundwater Potentials and Subsurface water Hydrochemistry in a Tropical Anambra Basin, Southeastern Nigeria
12
作者 Saadu Umar Wali Ibrahim Mustapha Dankani +4 位作者 Sheikh Danjuma Abubakar Murtala Abubakar Gada Kabiru Jega Umar Abdulqadir Abubakar Usman Ibrahim Mohammad Shera 《Journal of Geological Research》 2020年第3期1-24,共24页
This review presented a detailed re-assessment of the hydrogeology and hydrochemistry of the Tropical Anambra Basin.It identified and discussed the major geological formations and their groundwater potentials.The geol... This review presented a detailed re-assessment of the hydrogeology and hydrochemistry of the Tropical Anambra Basin.It identified and discussed the major geological formations and their groundwater potentials.The geological examination showed that the Ajali Formation is confined in places forming an artesian condition;the potentials of this aquifer decline in the western basin due to a decrease in thickness.The sandstone associates of the Nsukka Formation are aquiferous and have produced high-pressure artesian boreholes along the Oji River.The Imo Shale is characterized by permeability stability all over much of the intermediate unit.The Bende-Ameki aquifer has a lesser amount of groundwater when equated to other formations;the geologic characteristics do not produce favorable hydrogeological conditions for groundwater occurrence.The stratigraphical and structural framework suggested the presence of an efficient throughflow in the basin.Based on physical and chemical parameters of water quality,the basin holds water of acceptable quality.While there are considerable investigations on the hydrogeology and hydrochemistry,studies are short of analysis of the hydrogeochemical evolution of groundwater,water quality index,heavy metals pollution index as well as total hazard quotient.Suitability of groundwater based on agricultural water quality indices(e.g.SAR)is also salient.Therefore,future studies should address these owing to increasing dependence on groundwater. 展开更多
关键词 Geological formations Groundwater hydrochemistry Ajali formation Ameki formation Imo shale
下载PDF
Re-examination of Hydrochemistry and Groundwater Potentials of Cross River and Imo-Kwa-Ibo Intersecting Tropical Basins of South-South Nigeria
13
作者 Saadu Umar Wali Ibrahim Mustapha Dankani +4 位作者 Sheikh Danjuma Abubakar Murtala Abubakar Gada Kabiru Jega Umar Abdulqadir Abubakar Usman Ibrahim Mohammad Shera 《Journal of Geological Research》 2020年第3期25-42,共18页
This review attempted a detailed description of geological and hydrogeological configurations of Cross River and Imo-Akwa Ibo basins.It presented a synthesis of hydrochemistry and a description of the hydrogeological ... This review attempted a detailed description of geological and hydrogeological configurations of Cross River and Imo-Akwa Ibo basins.It presented a synthesis of hydrochemistry and a description of the hydrogeological configurations of the two basins.Hydrogeologically,most areas under Cross River and Imo-Kwa-Ibo are poor in terms of groundwater potentials.Based on the hydrochemistry,the basins hold water of excellent quality.Groundwater sources fall in soft to moderately hard classes.The entire sources groundwater has a TDS concentration of less than 500 mg/l.Groundwater classification based on electrical conductivity(EC)showed EC levels were less than 500μS/cm.Most of the examined cations and anions are within WHO reference guidelines for drinking water quality.However,no broad analysis of water quality based on water quality indices.Also,studies modeling pollution or the impact of land use changes on groundwater quality are wanting.Thus,further analysis of the hydrochemistry of groundwater aquifers is recommended. 展开更多
关键词 Cross River Basin Imo-Kwa-Ibo Basin HYDROGEOLOGY hydrochemistry
下载PDF
Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin, northwestern China 被引量:13
14
作者 Lu CHEN GuangCai WANG +2 位作者 FuSheng HU YaJun WANG Liang LIU 《Journal of Arid Land》 SCIE CSCD 2014年第4期378-388,共11页
The Turpan Basin is located in the arid zone of northwestern China and is a typical closed inland basin surrounded by high mountains. It is one of the most arid regions in the world and, as a result, the groundwater i... The Turpan Basin is located in the arid zone of northwestern China and is a typical closed inland basin surrounded by high mountains. It is one of the most arid regions in the world and, as a result, the groundwater in this area is very important for both domestic and agricultural uses. In the present study, the relationships of major elements(K+, Na+, Ca2+, Mg2+, HCO3-, SO42- and Cl-) and environmental isotopes(δ18O, δ2H and T) in groundwater were analyzed to investigate the evolution of the regional hydrochemistry within the Turpan Basin. The hydrochemistry results demonstrate that groundwater with high total dissolved solids(TDS) concentration is dominated by sodium chloride(Na-Cl) and sodium sulfate(Na-SO4) type water, whereas that with low TDS concentration(typically from near mountain areas) is dominated by calcium bicarbonate(Ca-HCO3) type water. The evolution of groundwater hydrochemistry within the Turpan Basin is a result of calcium carbonate precipitation, evaporation concentration, cation exchange and dissolution of evaporites(i.e. halite, mirabilite and gypsum). Furthermore, evaporite dissolution associated with irrigation practice plays a key role in the groundwater salinization, especially in the central part of the basin. Environmental isotopes reveal that the groundwater is recharged by precipitation in the mountain areas and fast vertical infiltration of irrigation return flow. In the southern sub-basin the shallow groundwater and the deep groundwater is separated at a depth of about 40 m, with substantial differences in terms of hydrochemical and isotopic characteristics. The results are useful for decision making related to sustainable water resource utilization in the Turpan Basin and other regions in northwestern China. 展开更多
关键词 深层地下水 水化学演化 吐鲁番盆地 中国西北部 西北干旱区 同位素地球化学 水资源可持续利用 总溶解固体
下载PDF
Hydrochemistry and carbon isotope characteristics of Nujiang River water:Implications for CO_(2) budgets of rock weathering in the Tibetan Plateau
15
作者 Wenjing LIU Huiguo SUN +1 位作者 Yuanchuan LI Zhifang XU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第12期2953-2970,共18页
The Tibetan Plateau is one of the most complicated geographical units worldwide in terms of its tectonic and environmental background.Although a hotspot for continental weathering and carbon cycling studies,accurate d... The Tibetan Plateau is one of the most complicated geographical units worldwide in terms of its tectonic and environmental background.Although a hotspot for continental weathering and carbon cycling studies,accurate determination of the weathering carbon budget is challenging in this area,especially sink and source flux quantification and the controlling mechanisms.Compared with other major rivers on the plateau,the Nujiang River is characterized by less human disturbance and maintains a relatively pristine state.This study investigates the high spatiotemporal resolution hydrochemistry and dual-carbon isotope composition(δ~(13)C_(DIC)andΔ~(14)C_(DIC))of river water in the Nujiang River Basin.The results revealed that the solutes and dissolved inorganic carbon in the river water are predominantly derived from rock weathering by carbonic and sulfuric acids,mainly due to the carbonate weathering process,and significantly enhanced by deep carbon sourcing from hot springs in the fault zone.The average contributions of geological and modern carbon in the main stream of the Nujiang River are 35.2%and 64.8%,respectively,and sulfide oxidation contributes>90%of sulfate ions in the river water.After considering the involvement of sulfuric acid generated by sulfide oxidation during rock weathering,the calculated consumption fluxes of atmospheric CO_(2) by silicate and carbonate weathering in the watershed were decreased by approximately 52.0%and 37.4%,respectively,compared with those calculated ignoring this process.Rock weathering of the Nujiang River Basin is a“CO_(2) sink”on a short time scale,while the participation of sulfuric acid makes it a“CO_(2) source”on a geological time scale.The high-frequency observations of ion concentrations,elemental ratios,and calculated contributions of different rock weathering materials indicate that carbonate rock weathering is more sensitive to temperature and runoff variations than silicate rock weathering,with the solute contribution from carbonate weathering increasing significantly during monsoon period.The material input from different rock types is dominated by the hydrological pathways and water-rock reaction times in the basin.This study reveals the river solute origins and weathering CO_(2) sequestration effect in response to a monsoonal climate in one of the most representative pristine plateau watersheds in the world,which is of great importance for elucidating the weathering control mechanisms and CO_(2) net sourcesink effect in plateau watersheds. 展开更多
关键词 Tibetan Plateau Nujiang River Basin CO_(2)budgets of rock weathering hydrochemistry and carbon isotope composition High spatiotemporal resolution
原文传递
Assessment of groundwater quantity, quality, and associated health risk of the Tano river basin, Ghana
16
作者 Adwoba Kua-Manza Edjah Bruce Banoeng-Yakubo +6 位作者 Anthony Ewusi Enoch Sakyi-Yeboah David Saka Clara Turetta Giulio Cozzi David Atta-Peters Larry Pax Chegbeleh 《Acta Geochimica》 EI CAS CSCD 2024年第2期325-353,共29页
In the Tano River Basin,groundwater serves as a crucial resource;however,its quantity and quality with regard to trace elements and microbiological loadings remain poorly understood due to the lack of groundwater logs... In the Tano River Basin,groundwater serves as a crucial resource;however,its quantity and quality with regard to trace elements and microbiological loadings remain poorly understood due to the lack of groundwater logs and limited water research.This study presents a comprehensive analysis of the Tano River Basin,focusing on three key objectives.First,it investigated the aquifer hydraulic parameters and the results showed significant spatial variations in borehole depths,yields,transmissivity,hydraulic conductivity,and specific capacity.Deeper boreholes were concentrated in the northeastern and southeastern zones,while geological formations,particu-larly the Apollonian Formation,exhibit a strong influence on borehole yields.The study identified areas with high transmissivity and hydraulic conductivity in the southern and eastern regions,suggesting good groundwater avail-ability and suitability for sustainable water supply.Sec-ondly,the research investigated the groundwater quality and observed that the majority of borehole samples fall within WHO(Guidelines for Drinking-water Quality,Environmental Health Criteria,Geneva,2011,2017.http://www.who.int)limit.However,some samples have pH levels below the standards,although the groundwater generally qualifies as freshwater.The study further explores hydrochemical facies and health risk assessment,highlighting the dominance of Ca–HCO3 water type.Trace element analysis reveals minimal health risks from most elements,with chromium(Cr)as the primary contributor to chronic health risk.Overall,this study has provided a key insights into the Tano River Basin’s hydrogeology and associated health risks.The outcome of this research has contributed to the broader understanding of hydrogeologi-cal dynamics and the importance of managing groundwater resources sustainably in complex geological environments. 展开更多
关键词 GROUNDWATER Unsupervised machine learning technique hydrochemistry Aquifer hydraulic parameter Health risk
下载PDF
典型西南岩溶地下水抗生素污染指示因子识别
17
作者 黄福杨 单婷倩 +3 位作者 林静 刘菲 王彬 黄一倪 《地质科技通报》 CAS CSCD 北大核心 2024年第2期283-292,共10页
我国南方岩溶地区是全球三大岩溶集中分布区之一,由于岩溶地区独特的含水层结构,其地下水极易受到地表污染。为了探明岩溶地下水中抗生素污染空间分布的主控因素,厘清抗生素浓度与水化学参数的相关关系,进而识别岩溶地区水环境中抗生素... 我国南方岩溶地区是全球三大岩溶集中分布区之一,由于岩溶地区独特的含水层结构,其地下水极易受到地表污染。为了探明岩溶地下水中抗生素污染空间分布的主控因素,厘清抗生素浓度与水化学参数的相关关系,进而识别岩溶地区水环境中抗生素污染的指示因子,以西南典型岩溶地下河系统为研究对象,利用超高效液相色谱串联质谱联用仪(UPLC-MS/MS)分析了35种抗生素浓度。结果表明:研究区共检出了30种抗生素,包括3种四环素类(<检出限(MDL)~421 ng/L)、5种大环内酯类(28.3~884 ng/L)、9种磺胺类(2.50~30 ng/L)和13种喹诺酮类(19.5~1807 ng/L)。其中,大环内酯类和喹诺酮类抗生素是研究区检出的主要抗生素,其空间分布特征主要受污染源和稀释作用控制。研究区水化学类型包括HCO_(3)-Ca·Mg型和HCO_(3)-Ca·Na·Mg型,抗生素浓度在不同的水化学类型中存在显著差异,HCO_(3)-Ca·Na·Mg型水样中抗生素浓度显著高于HCO_(3)-Ca·Mg型(2~10倍)(Mann-Whitney检验,p<0.05)。同时,Pearson相关性分析结果表明,三氮(硝氮、亚硝氮与氨氮浓度之和)、总有机碳(TOC)、Na^(+)、Cl^(-)浓度与单一抗生素浓度、不同种类抗生素浓度、抗生素总浓度均呈显著正相关(r=0.81~0.99,p<0.05,N=7~8)。相比三氮、TOC和Na^(+),Cl^(-)在环境中性质更稳定,是岩溶地区地下水系统中更可靠的抗生素污染指示因子。本研究为受县级污水处理厂和农村生活废水排放影响的岩溶地区抗生素污染识别与污染预测提供了理论依据。 展开更多
关键词 抗生素 指示因子 岩溶地下水 空间分布 水化学 西南
下载PDF
西藏南部古堆高温地热田水化学特征及其成因研究
18
作者 王晨光 郑绵平 +6 位作者 张雪飞 邢恩袁 叶传永 任建红 黎明明 何江涛 王丰翔 《地质学报》 EI CAS CSCD 北大核心 2024年第2期558-578,共21页
作为我国近些年地热勘探取得重要突破的地热田,西藏南部古堆地热田以其浅埋、高温、富锂、活动剧烈为典型特征而为人们广泛关注。然而关于其水化学特征和成因人们还知之甚少。古堆高温富锂地热田由五个地热显示区组成,分别是布雄朗古、... 作为我国近些年地热勘探取得重要突破的地热田,西藏南部古堆地热田以其浅埋、高温、富锂、活动剧烈为典型特征而为人们广泛关注。然而关于其水化学特征和成因人们还知之甚少。古堆高温富锂地热田由五个地热显示区组成,分别是布雄朗古、杀噶朗噶、巴布的密、茶卡和日若地热显示区,其中布雄朗古、杀噶朗噶地热显示区地热活动最为强烈。古堆地热田沸泉和热泉的水化学类型主要为Na-Cl型,温泉和冷泉的水化学类型主要为Na-Cl-HCO_(3)、Na-HCO_(3)-Cl和Na-HCO_(3)型,地表水化学类型主要为Ca-Mg-SO_(4)-HCO_(3)和Na-Ca-Mg-SO_(4)-Cl-HCO_(3)型,这些不同的水化学类型可能反映其不同的成因和物质来源;K-Na地温计显示布雄朗古、杀噶朗噶、巴布的密、茶卡有相似的热储温度(最高可达240.56℃),且明显高于石英和K-Mg地温计计算结果;除了部分沸泉,多数地热水在Na-K-Mg三角图中的投点都远离完全平衡线,表明地热水在从热储上升至地表的过程中没有达到完全的化学再平衡,可能与冷水发生了混合;通过对地热流体特征元素的分析发现Cl、Na、K、SiO_(2)、B、As、Li、Rb、Cs和F是古堆地热流体的特征化学组分,Cl和其他特征化学组分之间良好的线性关系,表明了深部母地热流体的存在;通过对古堆地热流体焓-氯图解的分析表明古堆地热田深部可能存在两类不同的母地热流体,其Cl含量、焓值和对应的温度分别为567 mg/L、1562.5 J/g、335.5℃和697 mg/L、1250 J/g、282.5℃,并且古堆地热田的母地热流体可能是通过与围岩的热传导、沸腾或者与浅部地表冷水混合的冷却方式上升至地表形成不同温度、水化学类型和活动强度的热泉,本研究对深入认识我国西藏南部高温富锂地热系统的水化学特征和形成过程具有重要理论意义,同时对将来合理利用我国西藏南部清洁地热能和地热型锂资源具有重要的现实意义。 展开更多
关键词 西藏南部 古堆高温地热田 水化学特征 成因
下载PDF
致密砂岩气藏地层水水化学特征及其地质意义——以川西坳陷新场气田为例
19
作者 山俊杰 黄仕林 +4 位作者 毕有益 邓美洲 严焕榕 衡勇 郑艳 《岩石矿物学杂志》 CAS CSCD 北大核心 2024年第1期63-73,共11页
四川盆地侏罗系沙溪庙组及三叠系须家河组作为陆上致密气资源增储上产重点的接替区,保有大量的难动用储量,具有较大的勘探开发潜力。然而随着深入的滚动勘探开发,中浅层沙溪庙组气藏和深层须家河组气藏气井产水已严重制约了气井产能,部... 四川盆地侏罗系沙溪庙组及三叠系须家河组作为陆上致密气资源增储上产重点的接替区,保有大量的难动用储量,具有较大的勘探开发潜力。然而随着深入的滚动勘探开发,中浅层沙溪庙组气藏和深层须家河组气藏气井产水已严重制约了气井产能,部分气井甚至因水淹而停产。本文对研究区不同层位34口气井的地层水进行了主量、微量元素和气藏成藏演化特征分析,结果显示沙溪庙组气藏和须家河组气藏经历了先成藏后致密再改造的成藏演化过程,断层的沟通导致深层须家河组地层水的大量上涌,使断层附近高渗的砂体被充注,在水动力等驱动作用下,天然气以游离相或水溶相沿断裂带进行垂向高效运移。垂向上大部分离子含量都随着埋深逐渐增大,深层须家河组地层水气藏具有较好的油气保存条件,并且经历了更为复杂的水岩相互作用,不同程度地使K、Ba、Sr、Li、Rb等元素更加富集。 展开更多
关键词 新场气田 致密砂岩 沙溪庙组 须家河组 地层水 水化学
下载PDF
陕西北洛河流域地下水水化学和同位素特征及其水质评价
20
作者 周殷竹 马涛 +4 位作者 袁磊 李甫成 韩双宝 周金龙 李勇 《中国地质》 CAS CSCD 北大核心 2024年第2期663-675,共13页
【研究目的】北洛河是黄河的重要二级支流,研究该流域典型支流地下水的水质状况对于黄河流域生态保护和高质量发展具有重要意义。【研究方法】本文以北洛河流域为主要对象,系统查明流域地下水水质现状,圈定劣质地下水分布区,为饮水安全... 【研究目的】北洛河是黄河的重要二级支流,研究该流域典型支流地下水的水质状况对于黄河流域生态保护和高质量发展具有重要意义。【研究方法】本文以北洛河流域为主要对象,系统查明流域地下水水质现状,圈定劣质地下水分布区,为饮水安全提供保障。此外,对该区地下水水化学和D-18O同位素组成进行分析,研究地下水水化学特征及演化机制,揭示水文地质条件及人为因素对区域地下水水文地球化学特征的控制和影响作用。【研究结果】区内地下水水化学成分除受岩石风化和蒸发浓缩作用的共同控制之外,部分还受到人类活动的影响。D-18O同位素组成指示了地下水整体上受蒸发浓缩作用影响。【结论】上游碎屑岩中的石膏、盐岩等易溶矿物经溶滤进入地下水,下游松散孔隙水在蒸发浓缩的作用下积聚盐分导致上、下游地下水TDS较高;奥陶系岩溶含水岩组和新生界断陷盆地含水岩组地下水水化学组成主要受蒸发盐岩影响,此外还受到人类活动的影响。白垩系和石炭系—侏罗系含水岩组地下水主要分布于岩石风化区,说明该地下水水化学组分主要受岩石风化作用控制,且主要受硅酸盐岩和蒸发盐岩风化影响,人类活动影响的扰动相对较小。上、下游地区地下水受工矿活动影响较严重,中游地下水受工矿活动、农业活动、生活污水影响均较小,水质整体较好。 展开更多
关键词 水化学 D-18O同位素 地下水水质评价 北洛河流域 水文地质调查工程 陕西
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部