期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Pollution source identification methods and remediation technologies of groundwater: A review
1
作者 Ya-ci Liu Yu-hong Fei +2 位作者 Ya-song Li Xi-lin Bao Peng-wei Zhang 《China Geology》 CAS CSCD 2024年第1期125-137,共13页
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi... Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies. 展开更多
关键词 Groundwater pollution Identification of pollution sources Geophysical exploration identification Geochemistry identification Isotopic tracing Numerical modeling Remediation technology hydrogeological conditions hydrogeological survey engineering
下载PDF
Microbial community composition and environmental response characteristics of typical brackish groundwater in the North China Plain
2
作者 Huai-sheng Zhang Wu-tian Cai +5 位作者 Feng Guo Chao Bian Fu-dong Liu Lei Zhang Jin-wei Liu Miao Zhao 《China Geology》 CAS CSCD 2023年第3期383-394,共12页
To reveal the microbial community composition of regional shallow porous brackish groundwater and its response characteristics to groundwater environment,the first and second aquifers in Taocheng District,Hengshui Cit... To reveal the microbial community composition of regional shallow porous brackish groundwater and its response characteristics to groundwater environment,the first and second aquifers in Taocheng District,Hengshui City were selected,and 10 groundwater source samples were collected for hydrochemical analysis and microbial 16S RNA gene V4-V5 regional sequencing.The results showed that the shallow brackish groundwater in the study area is weakly alkaline and has high ion content.The hydrochemical types are SO_(4)·Cl-Na·Mg type and HCO3·Cl-Na·Mg type as a whole.The spatial zonation of the abundance and diversity of groundwater microorganisms is obvious.The number of endemic bacteria in groundwater from upstream,midstream to downstream is 11,135 and 22 respectively,with a total of 22 bacteria.Proteobacteria is the most dominant in groundwater level(38.82%-86.88%),and there are obvious differences in different sections.At the genus level,the main dominant species in each group and sample are Pseudomonas and Hydrogenophaga.In terms of composition difference,Pseudohongiella,Pseudorhodobacter and Limnohabitans are the representatives of UR,MR and LR.On the whole,the composition of flora in groundwater in the study area is sensitive and closely related to hydrochemical processes.Species abundance is affected by alkaline and high salinity environmental indicators,while species diversity is related to depth and dissolved oxygen in weak reduction environment. 展开更多
关键词 Groundwater microorganism Microbial Endemic bacteria BIOCHEMISTRY Pseudomonas Hydrogenophage Brackish groundwater Environmental response hydrogeological survey engineering Environmental geological survey engineering
下载PDF
Source,migration,distribution,toxicological effects and remediation technologies of arsenic in groundwater in China
3
作者 Zhen Wang Hua-ming Guo +1 位作者 Hai-yan Liu Wei-min Zhang 《China Geology》 CAS CSCD 2023年第3期476-493,共18页
Groundwater with high arsenic(As) content seriously threatens human life and health. Drinking high-As groundwater for a long time will lead to various pathological changes such as skin cancer, liver cancer,and kidney ... Groundwater with high arsenic(As) content seriously threatens human life and health. Drinking high-As groundwater for a long time will lead to various pathological changes such as skin cancer, liver cancer,and kidney cancer. High-As groundwater has become one of the most serious environmental geological problems in China and even internationally. This paper aims to systematically summarize the sources,migration, distribution, toxicological effects, and treatment techniques of As in natural groundwater in China based on a large number of literature surveys. High-As groundwater in China is mainly distributed in the inland basins in arid and semi-arid environments and the alluvial and lacustrine aquifers in river deltas in humid environments, which are in neutral to weakly alkaline and strongly reducing environments.The content of As in groundwater varies widely, and As(Ⅲ) is the main form. The main mechanism of the formation of high-As groundwater in China is the reduced dissolution of Fe and Mn oxides under the action of organic matter and primary microorganisms, alkaline environment, intense evaporation and concentration, long-term water-rock interaction, and slow groundwater velocity, which promote the continuous migration and enrichment of As in groundwater. There are obvious differences in the toxicity of different forms of As. The toxic of As(Ⅲ) is far more than As(V), which is considered to be more toxic than methyl arsenate(MMA) and dimethyl arsenate(DMA). Inorganic As entering the body is metabolized through a combination of methylation(detoxification) and reduction(activation) and catalyzed by a series of methyltransferases and reductases. At present, remediation methods for high-As groundwater mainly include ion exchange technology, membrane filtration technology, biological treatment technology, nanocomposite adsorption technology, electrochemical technology, and so on. All the above remediation methods still have certain limitations, and it is urgent to develop treatment materials and technical means with stronger As removal performance and sustainability. With the joint efforts of scientists and governments of various countries in the future, this worldwide problem of drinking-water As poisoning will be solved as soon as possible. This paper systematically summarizes and discusses the hot research results of natural high-As groundwater, which could provide a reference for the related research of high-As groundwater in China and even the world. 展开更多
关键词 High arsenic groundwater Source and distribution Enrichment mechanism Skin cancer Liver cancer Kidney cancer Toxicological effect Remediation technology Ecological geological survey engineering hydrogeological survey engineering
下载PDF
Unraveling the mechanisms underlying lake expansion from 2001 to 2020 and its impact on the ecological environment in a typical alpine basin on the Tibetan Plateau
4
作者 Chang-chang Fu Xiang-quan Li Xu Cheng 《China Geology》 CAS CSCD 2023年第2期216-227,共12页
Yanhu Lake basin(YHB)is a typical alpine lake on the northeastern Tibetan Plateau(TP).Its continuous expansion in recent years poses serious threats to downstream major projects.As a result,studies of the mechanisms u... Yanhu Lake basin(YHB)is a typical alpine lake on the northeastern Tibetan Plateau(TP).Its continuous expansion in recent years poses serious threats to downstream major projects.As a result,studies of the mechanisms underlying lake expansion are urgently needed.The elasticity method within the Budyko framework was used to calculate the water balance in the Yanhu Lake basin(YHB)and the neighboring Tuotuo River basin(TRB).Results show intensification of hydrological cycles and positive trends in the lake area,river runoff,precipitation,and potential evapotranspiration.Lake expansion was significant between 2001 and 2020 and accelerated between 2015 and 2020.Precipitation increase was the key factor underlying the hydrological changes,followed by glacier meltwater and groundwater.The overflow of Yanhu Lake was inevitable because it was connected to three other lakes and the water balance of all four lakes was positive.The high salinity lake water diverted downstream will greatly impact the water quality of the source area of the Yangtze River and the stability of the permafrost base of the traffic corridor. 展开更多
关键词 Attribution analysis Budyko framework Climate change Lake expansion Water balance Diverting water to the Yangtze River Hydrogeology survey engineering Tibetan Plateau
下载PDF
Effects of groundwater level on vegetation in the arid area of western China 被引量:6
5
作者 Ge Song Jin-ting Huang +2 位作者 Bo-han Ning Jia-wei Wang Lei Zeng 《China Geology》 2021年第3期527-535,共9页
At present,investigation about the relationship between the change of groundwater level and vegetation mostly focuses on specific watersheds,i.e.limited in river catchment scale.Understanding the change of groundwater... At present,investigation about the relationship between the change of groundwater level and vegetation mostly focuses on specific watersheds,i.e.limited in river catchment scale.Understanding the change of groundwater level on vegetation in the basin or large scale,be urgently needed.To fill this gap,two typical arid areas in the west of China(Tarim Basin and Qaidam Basin)were chosen the a typical research area.The vegetation status was evaluated via normalization difference vegetation index(NDVI)from 2000 to 2016,sourced from MODN1F dataset.The data used to reflect climate change were download from CMDSC(http://data.cma.cn).Groundwater level data was collected from monitor wells.Then,the relationship of vegetation and climate change was established with univariate linear regression and correlation analysis approach.Results show that:Generally,NDVI value in the study area decreased before 2004 then increased in the research period.Severe degradation was observed in the center of the basin.The area with an NDVI value>0.5 decreased from 12%to 6%between 2000 and 2004.From 2004 to 2014,the vegetation in the study area was gradually restored.The whole coverage of Qaidam Basin was low.And the NDVI around East Taigener salt-lake degraded significantly,from 0.596 to 0.005,2014 and 2016,respectively.The fluctuation of groundwater level is the main reason for the change of surface vegetation coverage during the vegetation degradation in the basin.However,the average annual precipitation in the study area is low,which is not enough to have a significant impact on vegetation growth.The annual average precipitation showed an increase trend during the vegetation restoration in the basin,which alleviates the water shortage of vegetation growth in the region.Meanwhile,the dependence of surface vegetation on groundwater is obviously weakened with the correlation index is−0.248.The research results are of some significance to eco-environment protection in the arid area of western China. 展开更多
关键词 NDVI Groundwater level Climate change Arid land hydrogeological survey engineering Tarim Basin Qaidam Basin Western China
下载PDF
Characteristics and sources of microplastic pollution in the water and sediments of the Jinjiang River Basin,Fujian Province,China 被引量:3
6
作者 Ya-ci Liu Lin Wu +2 位作者 Guo-wei Shi Sheng-wei Cao Ya-song Li 《China Geology》 CAS 2022年第3期429-438,共10页
Microplastic pollution is widely distributed from surface water to sediments to groundwater vertically and from land to the ocean horizontally.This study collected samples from surface water,groundwater,and sediments ... Microplastic pollution is widely distributed from surface water to sediments to groundwater vertically and from land to the ocean horizontally.This study collected samples from surface water,groundwater,and sediments from upper to lower reaches and then to the estuary in 16 typical areas in the Jinjiang River Basin,Fujian Province,China.Afterward,it determined the components and abundance of the microplastics and analyzed the possible microplastic sources through principal component analysis(PCA).As a result,seven main components of microplastics were detected,i.e.,polyethylene(PE),polypropylene(PP),polyvinyl chloride(PVC),polyethylene terephthalate(PET),polyformaldehyde(POM),nylon 6(PA6),and polystyrene(PS).Among them,PE and PP were found to have the highest proportion in the surface water and sediments and in the groundwater,respectively.The surface water,groundwater,and sediments had average microplastic abundance of 1.6 n/L,2.7 n/L and 33.8 n/kg,respectively.The microplastics in the sediments had the largest particle size,while those in the groundwater had the smallest particle size.Compared with water bodies and sediments in other areas,those in the study area generally have medium-low-level microplastic abundance.Three pollution sources were determined according to PCA,i.e.,the dominant agriculture-forestry-fishery source,domestic wastewater,and industrial production.This study can provide a scientific basis for the control of microplastics in rivers. 展开更多
关键词 Microplastic Surface water GROUNDWATER SEDIMENT ESTUARY hydrogeological survey engineering Environment geological survey engineering Jinjiang River basin
下载PDF
Distribution, characteristics, and research status of microplastics in the trunk stream and main lakes of the Yangtze River: A review 被引量:3
7
作者 Fang-ting Wang Ke Bao +5 位作者 Chang-sheng Huang Rui-ping Liu Wen-jing Han Cheng-yun Yi Long Li Yun Zhou 《China Geology》 2022年第1期171-184,共14页
Microplastic pollution has become an environmental issue of great concern owing to the persistence of microplastics and their potential adverse effects on biota.The Yangtze River is the longest river in China and the ... Microplastic pollution has become an environmental issue of great concern owing to the persistence of microplastics and their potential adverse effects on biota.The Yangtze River is the longest river in China and the third-longest river in the world,and the microplastics in this river will affect the health of a large population living along with it.To ensure the survival safety of people,it is essential to plan ahead and investigate in advance in order to understand the microplastic pollution in the river and work out countermeasures.This paper reviews the literature concerning the microplastic pollution in the Yangtze River basin and analyzes the abundance,shapes,colors,and composition of microplastics in the water bodies and sediments in the trunk stream and main lakes of the Yangtze River.The results are as follows.Compared to other river basins in China and abroad,the microplastics in the Yangtze River basin have a moderate abundance and high spatial heterogeneity.Owing to the barrier effect of the Three Gorges Dam on microplastics,the abundance of microplastics in the Three Gorges Reservoir is generally an order of magnitude higher than that in other sections of the river.Most microplastics in the water bodies and sediments are less than 1 mm in size and are transparent and colorful.In terms of shapes,they are dominated by fibers,followed by fragments and films.In terms of composition,the microplastics in the source region of the Yangtze River are mainly composed of nylon and polyethylene,while the microplastics in the surface water from the lower reaches of the Jinsha River to the Yangtze River estuary are dominated by polypropylene and polyethylene.The microplastics are primarily derived from the secondary microplastics in the environment,and relatively intensive human activities increase the abundance of microplastics.These results serve as bases for understanding and preventing microplastic pollution in the Yangtze River. 展开更多
关键词 Microplastics Surface water Sediment FRESHWATER Spatial distribution hydrogeological survey engineering Yangtze River China
下载PDF
Hydrodynamic characteristics of a typical karst spring system based on time series analysis in northern China 被引量:3
8
作者 Yi Guo Feng Wang +5 位作者 Da-jun Qin Zhan-feng Zhao Fu-ping Gan Bai-kun Yan Juan Bai Haji Muhammed 《China Geology》 2021年第3期433-445,共13页
In order to study the hydrodynamic characteristics of the karst aquifers in northern China,time series analyses(correlation and spectral analysis in addition with hydrograph recession analysis)are applied on Baotu Spr... In order to study the hydrodynamic characteristics of the karst aquifers in northern China,time series analyses(correlation and spectral analysis in addition with hydrograph recession analysis)are applied on Baotu Spring and Heihu Spring in Jinan karst spring system,a typical karst spring system in northern China.Results show that the auto-correlation coefficient of spring water level reaches the value of 0.2 after 123 days and 117 days for Baotu Spring and Heihu Spring,respectively.The regulation time obtained from the simple spectral density function in the same period is 187 days and 175 days for Baotu Spring and Heihu Spring.The auto-correlation coefficient of spring water level reaches the value of 0.2 in 34-82 days,and regulation time ranges among 40-59 days for every single hydrological year.The delay time between precipitation and spring water level obtained from cross correlation function is around 56 days for the period of 2012-2019,and varies among 30-79 days for every single hydrological year.In addition,the spectral bands in cross amplitude functions and gain functions are small with 0.02,and the values in the coherence functions are small.All these behaviors illustrate that Jinan karst spring system has a strong memory effect,large storage capacity,noticeable regulation effect,and time series analysis is a useful tool for studying the hydrodynamic characteristics of karst spring system in northern China. 展开更多
关键词 Karst spring Karst aquifer HYDRODYNAMIC Time series analysis Correlation analysis Spectral analysis hydrogeological survey engineering Jinan Shandong Province China
下载PDF
Response of glacier area variation to climate change in the Kaidu-Kongque river basin,Southern Tianshan Mountains during the last 20 years 被引量:3
9
作者 Lu-chen Wang Kun Yu +9 位作者 Liang Chang Jun Zhang Tao Tang Li-he Yin Xiao-fan Gu Jia-qiu Dong Ying Li Jun Jiang Bing-chao Yang Qian Wang 《China Geology》 2021年第3期389-401,共13页
Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on... Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on regional water resources.The primary role of understudying watershed scale glacier changes under changing climatic conditions is to ensure sustainable utilization of regional water resources,to prevent and mitigate glacier-related disasters.This study maps the current(2020)distribution of glacier boundaries across the Kaidu-Kongque river basin,south slope of Tianshan Mountains,and monitors the spatial evolution of glaciers over five time periods from 2000-2020 through thresholded band ratios approach,using 25 Landsat images at 30 m resolution.In addition,this study attempts to understand the role of climate characteristics for variable response of glacier area.The results show that the total area of glaciers was 398.21 km^(2)in 2020.The glaciers retreated by about 1.17 km^(2)/a(0.26%/a)from 2000 to 2020.The glaciers were reducing at a significantly rapid rate between 2000 and 2005,a slow rate from 2005 to 2015,and an accelerated rate during 2015-2020.The meteorological data shows slight increasing trends of mean annual temperature(0.02℃/a)and annual precipitation(2.07 mm/a).The correlation analysis demonstrates that the role of temperature presents more significant correlation with glacier recession than precipitation.There is a temporal hysteresis in the response of glacier change to climate change.Increasing trend of temperature in summer proves to be the driving force behind the Kaidu-Kongque basin glacier recession during the recent 20 years. 展开更多
关键词 Glacier area Climate change Remote sensing monitoring hydrogeological survey engineering Kaidu-Kongque river basin Tianshan Mountains Center Asia-Mongolian Plateau
下载PDF
Mechanisms of salt rejection at the ice-liquid interface during the freezing of pore fluids in the seasonal frozen soil area 被引量:2
10
作者 Huan Huang Chang-fu Chen +4 位作者 Xiao-jie Mo Ding-ding Wu Yan-ming Liu Ming-zhu Liu Hong-han Chen 《China Geology》 2021年第3期446-454,共9页
Seasonal frozen soil accounts for about 53.50%of the land area in China.Frozen soil is a complex multiphase system where ice,water,soil,and air coexist.The distribution and migration of salts in frozen soil during soi... Seasonal frozen soil accounts for about 53.50%of the land area in China.Frozen soil is a complex multiphase system where ice,water,soil,and air coexist.The distribution and migration of salts in frozen soil during soil freezing are notably different from those in unfrozen soil areas.However,little knowledge is available about the process and mechanisms of salt migration in frozen soil.This study explores the mechanisms of salt migration at the ice-liquid interface during the freezing of pore fluids through batch experiments.The results are as follows.The solute concentrations of liquid and solid phases at the ice-liquid interface(C*_(L),C*_(S))gradually increased at the initial stage of freezing and remained approximately constant at the middle stage.As the ice-liquid interface advanced toward the system boundary,the diffusion of the liquid phase was blocked but the ice phase continued rejecting salts.As a result,C*_(L)and C*_(S)rapidly increased at the final stage of freezing.The distribution characteristics of solutes in ice and the liquid phases before C*_(L)and C*_(S)became steady were mainly affected by the freezing temperature,initial concentrations,and particle-size distribution of media(quartz sand and kaolin).In detail,the lower the freezing temperature and the better the particle-size distribution of media,the higher the solute proportion in the ice phase at the initial stage of freezing.Meanwhile,the increase in concentration first promoted but then inhibited the increase of solutes in the ice phase.These results have insights and scientific significance for the tackling of climate change,the environmental protection of groundwater and soil,and infrastructure protection such as roads,among other things. 展开更多
关键词 Freezing area Pore fluid Ice-liquid interface Salt rejection Solute migration Building Qianghai-Tibet Plateau hydrogeological survey engineering China
下载PDF
Hydrological response characteristics of landslides under typhoon-triggered rainstorm conditions 被引量:2
11
作者 Tai-li Zhang Ai-guo Zhou +3 位作者 Qiang Sun He-sheng Wang Jian-bo Wu Zheng-hua Liu 《China Geology》 2020年第3期455-461,共7页
Many landslide disasters,which tend to result in significant damage,are caused by typhoon-triggered rainstorms.In this case,it is very important to study the dynamic characteristics of the hydrological response of lan... Many landslide disasters,which tend to result in significant damage,are caused by typhoon-triggered rainstorms.In this case,it is very important to study the dynamic characteristics of the hydrological response of landslide bodies since it enables the early warning and prediction of landslide disasters in typhoon periods.To investigate the dynamic mechanisms of groundwater in a landslide body under typhoon-triggered rainstorm conditions,the authors selected the landslide occurring in Zhonglin Village,Wencheng County,China(also referred to as Zhonglin Village landslide)as a case study.The transient seepage field characteristics of groundwater in the landslide body were simulated with two different rainfall models by using the finite element method(FEM).The research results show that the impact of typhoon-triggered rainstorms on landslides can be divided into three stages:(i)Rapid rise of groundwater level;(ii)infiltration of groundwater from the surface to deeper level,and(iii)surface runoff erosion.Moreover,the infiltration rate of groundwater in the landslide body is mainly affected by the intensity of typhoon-induced rainfall.It can be deduced that higher rainfall intensity leads to a greater potential difference and a higher infiltration rate.The rainfall intensity also determines the development mode of landslide deformation and destruction. 展开更多
关键词 Typhoon-triggered rainstorm Landslide SEEPAGE Hydrological response hydrogeological survey engineering Geological disaster survey engineering Zhejiang Province China
下载PDF
Responses of phreatophyte transpiration to falling water table in hyper-arid and arid regions,Northwest China 被引量:2
12
作者 Li-he Yin Dan-dan Xu +2 位作者 Wu-hui Jia Xin-xin Zhang Jun Zhang 《China Geology》 2021年第3期410-420,共11页
Quantitative assessment of the impact of groundwater depletion on phreatophytes in(hyper-)arid regions is key to sustainable groundwater management.However,a parsimonious model for predicting the response of phreatoph... Quantitative assessment of the impact of groundwater depletion on phreatophytes in(hyper-)arid regions is key to sustainable groundwater management.However,a parsimonious model for predicting the response of phreatophytes to a decrease of the water table is lacking.A variable saturated flow model,HYDRUS-1D,was used to numerically assess the influences of depth to the water table(DWT)and mean annual precipitation(MAP)on transpiration of groundwater-dependent vegetation in(hyper-)arid regions of northwest China.An exponential relationship is found for the normalized transpiration(a ratio of transpiration at a certain DWT to transpiration at 1 m depth,T_(a)^(*))with increasing DWT,while a positive linear relationship is identified between T_(a)^(*)and annual precipitation.Sensitivity analysis shows that the model is insensitive to parameters,such as saturated soil hydraulic conductivity and water stress parameters,indicated by an insignificant variation(less than 20%in most cases)under±50%changes of these parameters.Based on these two relationships,a universal model has been developed to predict the response of phreatophyte transpiration to groundwater drawdown for(hyper-)arid regions using MAP only.The estimated T_(a)^(*)from the model is reasonable by comparing with published measured values. 展开更多
关键词 Groundwater depletion Phreatophytes Transpiration Numerical assessment Water table depth(DWT) Mean annual precipitation(MAP) (Hyper-)arid regions hydrogeological survey engineering Northwest China.
下载PDF
Current situation and human health risk assessment of fluoride enrichment in groundwater in the Loess Plateau:A case study of Dali County,Shaanxi Province,China 被引量:1
13
作者 Rui-ping Liu Hua Zhu +2 位作者 Fei Liu Ying Dong Refaey M El-Wardany 《China Geology》 2021年第3期487-497,共11页
This study aims to investigate the mechanisms and health risks of fluoride enrichment in groundwater in the Loess Plateau,China.By taking Dali County,Shaanxi Province,China as an example,this study obtains the followi... This study aims to investigate the mechanisms and health risks of fluoride enrichment in groundwater in the Loess Plateau,China.By taking Dali County,Shaanxi Province,China as an example,this study obtains the following results through field investigation and the analyses of water,soil,and crop samples.(1)The groundwater can be divided into two major types,namely the Quaternary pore-fissure water and Karst water.The Karst area and sandy area have high-quality groundwater and serve as the target areas for optional water supply.The groundwater in the study area is slightly alkaline and highly saline.Meanwhile,high-fluoride groundwater is mainly distributed in the loess and river alluvial plains in the depression area of the Guanzhong Basin and the discharge areas of the groundwater,with the highest fluoride concentration exceeding seven times the national standard.(2)Fluoride in groundwater mainly originates from a natural source and human activities.The natural source refers to the fluoride-bearing minerals in rocks and soil,and the fluoride from this source is mainly controlled by natural factors such as climate,geologic setting,pH,specific hydrochemical environment,ion exchange,and mineral saturation.Human activities in modern life can be further divided into industrial and agricultural sources primarily.(3)The health risks of fluoride contamination are very high in the Loess Plateau,especially for children compared to adults.Meanwhile,the risks of fluoride exposure through food intake are higher than those through drinking water intake.The authors suggest selecting target areas to improve water supply and ensure the safety of drinking water in the study area.Besides,it is necessary to plant crops with low fluoride content or cash crops and to conduct groundwater treatment to reduce the fluoride concentration in drinking water.These results will provide a theoretical basis for safe water supply in the faulted basin areas in the Loess Plateau. 展开更多
关键词 FLUORIDE GROUNDWATER Human health risks Loess Plateau hydrogeological survey engineering Dali County Shaanxi Province China
下载PDF
Groundwater characteristics and climate and ecological evolution in the Badain Jaran Desert in the southwest Mongolian Plateau 被引量:1
14
作者 Zhe Wang Li-juan Wang +5 位作者 Jian-mei Shen Zhen-long Nie Ling-qun Meng Le Cao Shi-bo Wei Xiang-feng Zeng 《China Geology》 2021年第3期421-432,共12页
The Badain Jaran Desert is the third largest desert in China,covering an area of 50000 km2.It lies in Northwest China,where the arid and rainless natural environment has a great impact on the climate,environment,and h... The Badain Jaran Desert is the third largest desert in China,covering an area of 50000 km2.It lies in Northwest China,where the arid and rainless natural environment has a great impact on the climate,environment,and human living conditions.Based on the results of 1∶250000 regional hydrogeological surveys and previous researches,this study systematically investigates the circulation characteristics and resource properties of the groundwater as well as the evolution of the climate and ecological environment since the Quaternary in the Badain Jaran Desert by means of geophysical exploration,hydrogeological drilling,hydrogeochemistry,and isotopic tracing.The results are as follows.(1)The groundwater in the Badain Jaran Desert is mainly recharged through the infiltration of local precipitation and has poor renewability.The groundwater recharge in the desert was calculated to be 1.8684×10^(8)m^(3)/a using the water balance method.(2)The Badain Jaran Desert has experienced four humid stages since the Quaternary,namely MIS 13-15,MIS 5,MIS 3,and the Early‒Middle Holocene,but the climate in the desert has shown a trend towards aridity overall.The average annual temperature in the Badain Jaran Desert has significantly increased in the past 50 years.In detail,it has increased by about 2.5℃,with a higher rate in the south than in the north.Meanwhile,the precipitation amount has shown high spatial variability and the climate has shown a warming-drying trend in the past 50 years.(3)The lakes in the hinterland of the Badain Jaran Desert continuously shrank during 1973‒2015.However,the vegetation communities maintained a highly natural distribution during 2000‒2016,with the vegetation cover has increased overall.Accordingly,the Badain Jaran Desert did not show any notable expansion in that period.This study deepens the understanding of groundwater circulation and the climate and ecological evolution in the Badain Jaran Desert.It will provide a scientific basis for the rational exploitation of the groundwater resources and the ecological protection and restoration in the Badain Jaran Desert. 展开更多
关键词 Desert groundwater Water resource assessment Ecological environment hydrogeological survey engineering Badain Jaran Desert Alxa Right Banner SOUTHWEST Mongolian Plateau China
下载PDF
Distribution,characteristics and influencing factors of fresh groundwater resources in the Loess Plateau,China 被引量:1
15
作者 Hai-xue Li Shuang-bao Han +13 位作者 Xi Wu Sai Wang Wei-po Liu Tao Ma Meng-nan Zhang Yu-tao Wei Fu-qiang Yuan Lei Yuan Fu-cheng Li Bin Wu Yu-shan Wang Min-min Zhaoa Han-wen Yang Shi-bo Wei 《China Geology》 2021年第3期509-526,共18页
The fresh groundwater in the Loess Plateau serves as a major source of water required for the production and livelihood of local residents and is greatly significant for regional economic and social development and ec... The fresh groundwater in the Loess Plateau serves as a major source of water required for the production and livelihood of local residents and is greatly significant for regional economic and social development and ecological protection.This paper analyzes the hydrogeological conditions and groundwater characteristics in the Loess Plateau,expatiates on the types and distribution characteristics of the fresh groundwater in the plateau,and analyzes the influencing factors and mechanisms in the formation of the fresh groundwater in the plateau as a priority.Based on this,it summarizes the impacts of human activities and climatic change on the regional fresh groundwater.The groundwater in Loess Plateau features uneven temporal-spatial distribution,with the distribution space of the fresh groundwater closely relating to precipitation.The groundwater shows a distinct zoning pattern of hydrochemical types.It is fresh water in shallow parts and is salt water in deep parts overall,while the fresh water of exploration value is distributed only in a small range.The storage space and migration pathways of fresh groundwater in the loess area feature dual voids,vertical multilayers,variable structure,poor renewability,complex recharge processes,and distinct spatial differences.In general,the total dissolved solids(TDS)of the same type of groundwater tends to gradually increase from recharge areas to discharge areas.Conditions favorable for the formation of fresh groundwater in loess tablelands include the low content of soluble salts in strata,weak evaporation,and special hydrodynamic conditions.Owing to climate change and human activities,the resource quantity of regional fresh water tends to decrease overall,and the groundwater dynamic field and the recharge-discharge relationships between groundwater and surface water have changed in local areas.Human activities have a small impact on the water quality but slightly affect the water quantity of the groundwater in loess. 展开更多
关键词 Fresh groundwater Distribution pattern Climate change Human activities hydrogeological survey engineering Loess Plateau China
下载PDF
Hydrogeochemical characteristics of groundwater and pore-water and the paleoenvironmental evolution in the past 3.10 Ma in the Xiong’an New Area,North China
16
作者 Kai Zhao Jing-xian Qi +6 位作者 Yi Chen Bai-heng Ma Li Yi Hua-ming Guo Xin-zhou Wang Lin-ying Wang Hai-tao Li 《China Geology》 2021年第3期476-486,共11页
The groundwater level has been continuously decreasing due to climate change and long-time overexploitation in the Xiong’an New Area,North China,which caused the enhanced mixing of groundwater in different aquifers a... The groundwater level has been continuously decreasing due to climate change and long-time overexploitation in the Xiong’an New Area,North China,which caused the enhanced mixing of groundwater in different aquifers and significant changes in regional groundwater chemistry characteristics.In this study,groundwater and sediment pore-water in drilling cores obtained from a 600 m borehole were investigated to evaluate hydrogeochemical processes in shallow and deep aquifers and paleo-environmental evolution in the past ca.3.10 Ma.Results showed that there was no obvious change overall in chemical composition along the direction of groundwater runoff,but different hydrochemical processes occurred in shallow and deep groundwater in the vertical direction.Shallow groundwater(<150 m)in the Xiong’an New Area was characterized by high salinity(TDS>1000 mg/L)and high concentrations of Mn and Fe,while deep groundwater had better water quality with lower salinity.The high TDS values mostly occurred in aquifers with depth<70 m and>500 m below land surface.Water isotopes showed that aquifer pore-water mostly originated from meteoric water under the influence of evaporation,and aquitard pore-water belonged to Paleo meteoric water.In addition,the evolution of the paleoclimate since 3.10 Ma BP was reconstructed,and four climate periods were determined by theδ18O profiles of pore-water and sporopollen records from sediments at different depths.It can be inferred that the Quaternary Pleistocene(0.78‒2.58 Ma BP)was dominated by the cold and dry climate of the glacial period,with three interglacial intervals of warm and humid climate.What’s more,this study demonstrates the possibilities of the applications of pore-water on the hydrogeochemical study and further supports the finding that pore-water could retain the feature of paleo-sedimentary water. 展开更多
关键词 GROUNDWATER PORE-WATER HYDROGEOCHEMISTRY Stable oxygen isotope Paleoclimate change Paleoenvironmental reconstruction hydrogeological survey engineering Xiong’an New Area North China
下载PDF
Gene abundances of AOA,AOB,and anammox controlled by groundwater chemistry of the Pearl River Delta,China
17
作者 Kun Liu Xin Luo +2 位作者 Jiu Jimmy Jiao Ji-dong Gu Ramon Aravena 《China Geology》 2021年第3期463-475,共13页
Ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),and anaerobic ammonia-oxidation(anammox)bacteria are very important contributors to nitrogen cycling in natural environments.Functional gene abundances of... Ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),and anaerobic ammonia-oxidation(anammox)bacteria are very important contributors to nitrogen cycling in natural environments.Functional gene abundances of these microbes were believed to be well relevant to N-cycling in groundwater systems,especially in the Pearl River Delta(PRD)groundwater with unique high intrinsic ammonia concentrations.In this research,20 sediment samples from two in the PRD were collected for porewater chemistry analysis and quantification of N-cycling related genes,including archaeal and bacterial amoA gene and anammox 16S ribosomal Ribonucleic Acid(rRNA)gene.Quantitative Polymerase Chain Reaction(qPCR)results showed that gene abundances of AOA,AOB,and anammox bacteria ranged from 3.13×10^(5)to 3.21×10^(7),1.83×10^(4)to 2.74×10^(6),and 9.27×10^(4)to 8.96×10^(6)copies/g in the sediment of the groundwater system,respectively.Anammox bacteria and AOA dominated in aquitards and aquifers,respectively,meanwhile,the aquitard-aquifer interfaces were demonstrated as ammonium-oxidizing hotspots in the aspect of gene numbers.Gene abundances of nitrifiers were analyzed with geochemistry profiles.Correlations between gene numbers and environmental variables indicated that the gene abundances were impacted by hydrogeological conditions,and microbial-derived ammonium loss was dominated by AOA in the northwest PRD and by anammox bacteria in the southeast PRD. 展开更多
关键词 ANAMMOX Ammonium oxidizing archaea(AOA) Ammonium oxidation bacteria(AOB) AQUITARD Groundwater hydrogeological survey engineering Pearl River Delta China
下载PDF
The status quo and prospect of geothermal resources exploration and development in Beijing-Tianjin-Hebei region in China 被引量:11
18
作者 Gui-ling Wang Wan-li Wang +2 位作者 Wei Zhang Feng Ma Feng Liu 《China Geology》 2020年第1期173-181,共9页
The Beijing-Tianjin-Hebei region boasts rich geothermal resources and new achievements have been made in the exploration and development of geothermal resources in this region based on previous regional investigation.... The Beijing-Tianjin-Hebei region boasts rich geothermal resources and new achievements have been made in the exploration and development of geothermal resources in this region based on previous regional investigation.In detail,geothermal reservoirs of Gaoyuzhuang Formation of Jixian System and Changcheng System in Xiongan New Area have been recently discovered,opening up the second space of geothermal resources;the calculation method of the recoverable resources of geothermal fluid with reinjection being considered has been improved in Beijing-Tianjin-Hebei region,and uniform comprehensive assessment of shallow geothermal energy,hydrothermal geothermal resources,and hot dry rocks(HDR)geothermal resources in the whole Beijing-Tianjin-Shijiazhuang region has been completed.The scientific research base for cascade development and utilization of geothermal resources in Beijing-Tianjin-Hebei region has applied hydraulic fracturing technology to the geothermal reservoirs in Gaoyuzhuang Formation.As a result,the production capacity doubled and two-stage cascade utilization composed of geothermal power generation and geothermal heating were realized,with the first-phase installed capacity of 280 kW and the geothermal heating is 30000 m2.In this way,a model of the exploration,development,and utilization of geothermal resources formed.Large-scale utilization has become the future trend of geothermal resource development in Beijing-Tianjin-Hebei region,and great efforts shall be made to achieve breakthroughs in reinjection technology,geothermal reservoir reconstruction technology,thermoelectric technology and underground heat exchange technology. 展开更多
关键词 Geothermal resources The second space of geothermal reservoirs Hydraulic fracturing Integrated utilization Hydrogeology survey engineering Beijing-Tianjin-Hebei region China
下载PDF
Changes of groundwater flow field of Luanhe River Delta under the human activities and its impact on the ecological environment in the past 30 years 被引量:3
19
作者 She-ming Chen Fu-tian Liu +2 位作者 Zhuo Zhang Qian Zhang Wei Wang 《China Geology》 2021年第3期455-462,共8页
The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone.It enjoys rapid economic and social development while suffering relatively water scarcity.The overexploitation of groundwater in th... The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone.It enjoys rapid economic and social development while suffering relatively water scarcity.The overexploitation of groundwater in the Luanhe River Delta in recent years has caused the continuous drop of groundwater level and serious environmental and geological problems.This study systematically analyzes the evolution characteristics of the population,economy,and groundwater exploitation in the Luanhe River Delta and summarizes the change patterns of the groundwater flow regime in different aquifers in the Luanhe River Delta according to previous water resource assessment data as well as the latest groundwater survey results.Through comparison of major source/sink terms and groundwater resources,the study reveals the impacts of human activities on the groundwater resources and ecological environment in the study area over the past 30 years from 1990 to 2020.The results are as follows.The average annual drop rate of shallow groundwater and the deep groundwater in the centers of depression cones is 0.4 m and 1.64 m,respectively in the Luanhe River Delta in the past 30 years.The depression cones of shallow and deep groundwater in the study area cover an area of 545.32 km^(2)and 548.79 km^(2),respectively,accounting for more than 10%of the total area of the Luanhe River Delta.Overexploitation of groundwater has further aggravated land subsidence.As a result,two large-scale subsidence centers have formed,with a maximum subsidence rate of up to 120 mm/a.The drop of groundwater level has induced some ecological problems in the Luanhe River Delta area,such as the zero flow and water quality deterioration of rivers and continuous shrinkage of natural wetlands and water.Meanwhile,the proportion of natural wetland area to the total wetland area has been decreased from 99%to 8%and the water area from 1776 km^(2)to 263 km^(2).These results will provide data for groundwater overexploitation control,land subsidence prevention,and ecological restoration in plains and provide services for water resources management and national land space planning. 展开更多
关键词 Ecological environment Human activities Groundwater flow regime Groundwater resources Groundwater depression cone Land subsidence Hydrogeology survey engineering Luanhe River Delta Hebei Province North China
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部