期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
OSDA-free synthesis of FeZSM-22 zeolite from natural minerals for n-octane hydroisomerization
1
作者 Tiesen Li Ting Chen +5 位作者 Yinghui Ye Peng Dong TinghaiWang Qingyan Cui Chan Wang Yuanyuan Yue 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期51-59,共9页
A seed-directed approach to synthesizing Fe ZSM-22 zeolite without organic structure directing agent(OSDA)was developed by using Fe-rich diatomite as all aluminum and iron sources.The Fe ZSM-22zeolite with optimal cry... A seed-directed approach to synthesizing Fe ZSM-22 zeolite without organic structure directing agent(OSDA)was developed by using Fe-rich diatomite as all aluminum and iron sources.The Fe ZSM-22zeolite with optimal crystallinity and purity can be obtained by systematically adjusting feed composition and synthesis conditions.Characterizations show that Fe ZSM-22 zeolite synthesized with OSDA-free owns high crystallinity,obvious thin needle-shaped morphology and high Bronsted/Lewis acid ratio.Significantly,when used for n-octane hydroisomerization reaction,its derived catalyst exhibits the best catalytic performance reflected by the highest selectivity to C_(8)isomers compared to the two reference catalysts prepared based on a Fe-containing and a Fe-free ZSM-22 synthesized through an OSDA-directed route from natural diatomite and conventional chemicals,respectively.This work provides an alternative route to sustainably synthesizing heteroatomic zeolites with high performance. 展开更多
关键词 FeZSM-22 zeolite OSDA-free synthesis Natural minerals n-octane hydroisomerization
下载PDF
The Preparation of Nanosized Pd/ZSM-23 Bifunctional Catalysts for n-Hexadecane Hydroisomerization by Employing PHMB as the Growth Modifi er
2
作者 Jiazheng Sun Shuxiang Xiong +2 位作者 Qiong Wu Wei Wang Wei Wu 《Transactions of Tianjin University》 EI CAS 2023年第6期482-491,共10页
The development of highly effective metal-zeolite bifunctional catalysts for the hydroisomerization of n-alkanes is a paramount strategy to produce second-generation biofuels with high quality.In this study,polyhexame... The development of highly effective metal-zeolite bifunctional catalysts for the hydroisomerization of n-alkanes is a paramount strategy to produce second-generation biofuels with high quality.In this study,polyhexamethylene biguanide hydrochloride(PHMB)is precisely added to the initial gel to synthesize nanosized ZSM-23 zeolites(Z23-x PH).Due to orientation adsorption and steric hindrance effects of PHMB,each sample of Z23-x PH demonstrates enhanced mesoporosity in comparison with the conventional Z23-C zeolite.Furthermore,the Bronsted acid density of the Z23-x PH samples is also signifi cantly reduced due to a reduction in the distribution of framework Al at T2-T5 sites.The corresponding Pd/23-C and Pd/Z23-x PH bifunctional catalysts with 0.5 wt%Pd loading for n-hexadecane hydroisomerization are prepared by incorporating ZSM-23 zeolites as acid supports.According to the catalytic test results,the suitable addition of PHMB can effectively promote the iso-hexadecane yield.The Pd/Z23-2PH catalyst with an n_(PHMB)/n(_Si)molar ratio of 0.002 demonstrates the highest maximum iso-hexadecane yield of 74.1%at an n-hexadecane conversion of 88.3%.Therefore,the employment of PHMB has provided a simple route for the development of highly effective Pd/ZSM-23 catalysts for n-alkane hydroisomerization. 展开更多
关键词 n-Hexadecane hydroisomerization Nanosized ZSM-23 zeolite PHMB Bifunctional catalyst
下载PDF
Kinetic Modeling of Light Naphtha Hydroisomerization in an Industrial Universal Oil Products Penex^(TM)Unit
3
作者 Ramzy S.Hamied Zaidoon M.Shakor +2 位作者 Anfal H.Sadeiq Adnan A.Abdul Razak Ammar T.Khadim 《Energy Engineering》 EI 2023年第6期1371-1386,共16页
Recently,the isomerization of light naphtha has been increasingly significant in assisting refiners in meeting sternness specifications for gasoline.Isomerization process provides refiners with the advantage of reduci... Recently,the isomerization of light naphtha has been increasingly significant in assisting refiners in meeting sternness specifications for gasoline.Isomerization process provides refiners with the advantage of reducing sulfur,olefin,and benzene in the gasoline basin without significantly victimizing the octane.The mathematical modeling of a chemical reaction is a critical tool due to it can used to optimize the experimental data to estimate the optimum operating conditions for industrial reactors.This paper describes light naphtha isomerization reactions over a Pt/Al_(2)O_(3)-Cl catalyst at the Al-Dura Oil Refinery(Baghdad,Iraq)using a newly developed universal mathematical model.The proposed kinetic model involves 117 isomerization reactions and 90 cracking reactions to describe 52 real components graded from methane to n-octane.A Genetic Algorithm stochastic optimization technique applied in MATLAB R2020a software was employed to estimate the optimal set of kinetic parameters.The calculated activation energies for hydrocracking reactions was found to be higher than the other reactions because of hydrocracking reactions occur at higher range of temperatures.By benchmarking between the experimental and theoretical results for all 117 data sets,the mean absolute error was obtained to be 0.00360 for all 52 components.Also,a positive effect of increasing reaction temperatures was recognized on enhancing the research octane number(RON). 展开更多
关键词 Light naphtha hydroisomerization REACTIONS KINETICS mathematical modelling
下载PDF
Hydroisomerization of n-Pentane over Zn-Fe-S2O8-2/ZrO2-Al2O3 Superacid Catalyst: Activity, Surface Analysis and the Investigation of Deactivation and Regeneration
4
作者 Huapeng Cui Shengnan Li 《Open Journal of Inorganic Chemistry》 2023年第3期43-59,共17页
The Zn and Fe modified /ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> catalyst (Zn-Fe-SZA) was prepared and mechanisms of deactivation and methods for regeneration of as-prepared cata... The Zn and Fe modified /ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> catalyst (Zn-Fe-SZA) was prepared and mechanisms of deactivation and methods for regeneration of as-prepared catalyst were explored with n-pentane isomerization as a probe reaction. The results indicated that the isopentane yield of the fresh Zn-Fe-SZA-F catalyst was about 57% at the beginning of the run, and declined gradually to 50% within 1500 min, then fell rapidly from 50% to 40% between 1500 and 2500 minutes. The deactivation of Zn-Fe-SZA catalyst may be caused by carbon formation on surface of the catalyst, sulfate group attenuation owing to reduction by hydrogen, removal of sulfur species and the loss of strong acid sites. It was found that the initial catalytic activity over Zn-Fe-SZA-T catalyst was 48%, which recovered by 84.3% as compared to that of fresh catalyst (57%). However, it showed a sharp decrease in isopentane yield from 48% to 29% within 1500 minutes, showing poor stability. This is associated to the loss of acidity caused by removal of sulfur species cannot be basically restored by thermal treatment. Resulfating the calcined catalyst could improve the acidity of catalyst significantly, especially strong acid sites, as compared with the calcined sample. The improved stability of the resulfated catalyst can be explained by: 1) eliminaton of carbon deposition to some extent by calcination process, 2) formation of improved acidic nature by re-sulfation, favoring isomerization on acidic sites, 3) restructuring of the acid and metal sites via the calcination-re-sulfation procedure. 展开更多
关键词 ZN-FE Solid Superacid Surface Analysis DEACTIVATION REGENERATION hydroisomerization
下载PDF
Effect of preparation method on the bimetallic NiCu/SAPO-11 catalysts for the hydroisomerization of n-octane 被引量:7
5
作者 Zhichao Yang Yunqi Liu +4 位作者 Yanpeng Li Lingyou Zeng Zhi Liu Xueying Liu Chenguang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期23-30,共8页
The bimetallic NiCu/SAPO-11 catalysts were prepared by co-impregnation, sequential impregnation, coprecipitation, and mechanical mixing methods. Powder X-ray diffraction, nitrogen adsorption-desorption,temperature-pro... The bimetallic NiCu/SAPO-11 catalysts were prepared by co-impregnation, sequential impregnation, coprecipitation, and mechanical mixing methods. Powder X-ray diffraction, nitrogen adsorption-desorption,temperature-programmed desorption of ammonia, transmission electron microscopy, temperatureprogrammed reduction of hydrogen, and X-ray photoelectron spectroscopy were used to characterize the physicochemical properties of the catalysts. The catalytic performance of the catalysts was assessed by the hydroisomerization of n-octane. Results indicated that the conversion of n-octane and selectivity to n-octane isomers were related to the preparation methods of the catalysts. The catalysts with Ni-Cu alloy effectively restrained the hydrogenolysis reaction that decreases the selectivity of isomerization. The catalyst prepared by the mechanical mixing of NiO and CuO hardly formed Ni-Cu alloy, showing obvious hydrogenolysis and low selectivity to n-octane isomers. The unbalance between the metal and acid sites resulted in the low conversion of n-octane and selectivity to n-octane isomers. Among all the catalysts,the catalyst prepared by the co-impregnation method exhibited high catalytic activity and selectivity to n-octane isomers. 展开更多
关键词 Ni-Cu/SAPO-11 BIMETALLIC Preparation method hydroisomerization HYDROGENOLYSIS N-OCTANE
下载PDF
Synthesis of MOR/SAPO-11 Composite Molecular Sieve via Seed Crystallization for n-Alkane Hydroisomerization 被引量:6
6
作者 Sun Na Wang Haiyan +2 位作者 Ma Yuxiang Yang Zhanxu Kang Lei 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2019年第2期58-66,共9页
n-Alkane isomerization is a critical reaction that can affect parameters in oil refining, such as the gasoline octane number and diesel oil solidifying point. In this study, a catalyst support, mordenite (MOR)/silicoa... n-Alkane isomerization is a critical reaction that can affect parameters in oil refining, such as the gasoline octane number and diesel oil solidifying point. In this study, a catalyst support, mordenite (MOR)/silicoaluminophosphate (SAPO)-11 composite zeolite with core/shell structure, was synthesized by hydrothermal method with MOR acting as the seed for crystallization. The crystal structure, elemental composition, surface area, pore volume, and acidity of the catalyst was thoroughly characterized. In addition, the catalytic performance of the as-obtained Pt/MOR/SAPO-11 in the hydroisomerization of n-dodecane was tested. The results indicated that the properties and catalytic performance of the composite molecular sieve were quite different from those of the pure zeolites and physical mixture of MOR and SAPO-11 (MOR+SAPO-11). Compared with the physical mixture, MOR and SAPO-11 were more tightly bound in MOR/SAPO-11 because of chemical bonding. Moreover, the acidity and pore structure were favorable to the catalytic hydroisomerization of n-dodecane. Pt/MOR/SAPO-11 exhibited higher isomerization activity than the Pt-loaded pristine MOR and MOR+SAPO-11. Thus, the core-shell composite molecular sieve has promising industrial applications as the catalyst support. 展开更多
关键词 composite ZEOLITE CORE-SHELL structure MOR SAPO-11 hydroisomerization
下载PDF
Effect of silicon precursor on silicon incorporation in SAPO-11 and their catalytic performance for hydroisomerization of n-octane on Pt-based catalysts 被引量:3
7
作者 Zhichao Yang Jilong Li +1 位作者 Yunqi Liu Chenguang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期688-694,共7页
SAPO-11 molecular sieves were synthesized using silica sol, hydrophilic fumed silica, and tetraethyl orthosilicate(TEOS) as silicon precursors. Their physicochemical properties were characterized using XRD,SEM, nitrog... SAPO-11 molecular sieves were synthesized using silica sol, hydrophilic fumed silica, and tetraethyl orthosilicate(TEOS) as silicon precursors. Their physicochemical properties were characterized using XRD,SEM, nitrogen adsorption-desorption, Py-IR, NH_3-TPD, EDS, and ^(27)Al,^(31)P,^(29)Si MAS NMR techniques. The catalytic performance was assessed in the hydroisomerization of n-octane. The results showed that the silicon precursors influenced the physicochemical properties and catalytic performance of SAPO-11. SAPO-11 synthesized using hydrophilic fumed silica as silicon precursor showed higher silicon distribution and had more medium acid sites. SAPO-11 synthesized using TEOS as silicon precursor had more silicon content, but more silicon islands formed in its framework. The depolymerization of silicon precursors might affect the silicon content and distribution in SAPO-11. In the hydroisomerization of n-octane, the catalytic activity strongly depended on the number of medium acid sites instead of the number of total acid sites.SAPO-11 synthesized using hydrophilic fumed silica as silicon precursor exhibited higher catalytic activity than the other samples because it has more medium acid sites. 展开更多
关键词 SAPO-11 Silicon precursor Silicon incorporation Acid sites hydroisomerization N-OCTANE
下载PDF
Creating mesopores in ZSM-48 zeolite by alkali treatment: Enhanced catalyst for hydroisomerization of hexadecane 被引量:2
8
作者 Miao Zhang Lei Wang +2 位作者 Yujing Chen Qiumin Zhang Changhai Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第3期539-544,共6页
ZSM-48 zeolites with various Si/Al ratios were hydrothermally synthesized in the H_2N(CH_2)_6NH_2(HDA)-containing media. The obtained samples were highly crystallized with minor mixed phases as evidenced by X-ray powd... ZSM-48 zeolites with various Si/Al ratios were hydrothermally synthesized in the H_2N(CH_2)_6NH_2(HDA)-containing media. The obtained samples were highly crystallized with minor mixed phases as evidenced by X-ray powder diffraction(XRD). The alkaline treated ZSM-48 zeolites maintained its structure under different concentrations of Na OH aqueous solution. Micropores remained unchanged while mesopores with wide pore size distribution formed after the alkaline treatment. The surface area increased from 228 to 288 m^2/g. The Br?nsted acid sites had little alteration while an obvious increase of Lewis acid sites was observed. The hydroisomerization of hexadecane was performed as the model reaction to test the effects of the alkali treatment. The conversion of hexadecane had almost no change, which was attributed to the preservation of the Br?nsted acid sites. While high selectivity to iso-hexadecane with an improved iso to normal ratio of alkanes was due to the mesopore formation and improved diffusivity. 展开更多
关键词 ZSM-48 Alkali treatment hydroisomerization MESOPORE HEXADECANE
下载PDF
The direct synthesis of Ni/SAPO-11 hydroisomerization catalyst via a novel two-step crystallization strategy 被引量:1
9
作者 Wei-Long Zhan Yu-Chao Lyu +3 位作者 Xin-Mei Liu Lei Fan Fu-Rang Li Ye Yang 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2448-2459,共12页
The Ni/SAPO-11 catalyst used for n-hexane hydroisomerization was prepared via a novel two-step crystallization strategy.It involves introduction of nickel salt into the pre-crystalized system of SAPO-11 by grinding fo... The Ni/SAPO-11 catalyst used for n-hexane hydroisomerization was prepared via a novel two-step crystallization strategy.It involves introduction of nickel salt into the pre-crystalized system of SAPO-11 by grinding followed by a second crystallization step.No extra solvent is introduced during the whole synthesis procedure which reduces waste liquid emissions significantly.More importantly,interaction between nickel and support is effectively regulated by the novel method to achieve a well dispersed nickel species and inhibit formation of inert nickel spinel simultaneously.Chemical environments of framework Si are tuned to enhance surface acidity of the Ni/SAPO-11 catalyst.It also shows smaller particle size which favors fast diffusion of reactants and products.Insights into the two-step crystallization indicate that accumulation of SAPO-11 precursors in the pre-crystallization stage,pH regulation by nickel salt and structural directing effect of Ni2+during the second crystallization period account for the rapid crystal growth and smaller particle size of the Ni/SAPO-11 catalyst.All the unique features endow the Ni/SAPO-11 catalyst higher activity and isomers selectivity than the Pt/SAPO-11 catalyst in n-hexane hydroisomerization. 展开更多
关键词 Two-step crystallization hydroisomerization catalyst NICKEL SAPO-11 SYNTHESIS
下载PDF
Hierarchical SAPO-11 Molecular Sieve for n-Alkane Hydroisomerization Synthesized by Directing Agent Method 被引量:1
10
作者 Meng Yuan Wang Haiyan +2 位作者 Sun Na Yang Zhanxu Wang Yujia 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第4期85-92,共8页
Silicoaluminophosphates SAPO-11 molecular sieves with small particle size and hierarchical pores were synthesized using the directing agent method.The effect of crystallization time on the particle structure,morpholog... Silicoaluminophosphates SAPO-11 molecular sieves with small particle size and hierarchical pores were synthesized using the directing agent method.The effect of crystallization time on the particle structure,morphology,pore structure properties,and acid properties of SAPO-11 molecular sieves were investigated.Unlike the SAPO-11 molecular sieves synthesized with the conventional method,the results of XRD,SEM,BET and NH3-TPD analyses showed that the SAPO-11 molecular sieves synthesized by the directing agent method in a shorter crystallization time exhibited fine and uniform morphology.By increasing the crystallization time,the particle size of SAPO-11 molecular sieve was significantly reduced,and the mesoporous structure(intercrystalline pores)was formed.Furthermore,the external specific surface area and the total specific surface area reached 81.7 m^2/g and 192.0 m^2/g,respectively,which effectively reduced the pore mass transfer resistance and significantly increased the number of acid sites.The results of n-dodecane hydroisomerization revealed that the Pt/SAPO-11 prepared with the novel method exhibited higher catalytic activity and better hydroisomerization selectivity than that synthesized by the conventional hydrothermal method.Thus,the small particle molecular sieve showed a promising industrial application prospect to be used as catalyst support. 展开更多
关键词 directing agent method small particle SAPO-11 mesoporous structure hydroisomerization
下载PDF
n-Nonane hydroisomerization over hierarchical SAPO-11-based catalysts with sodium dodecylbenzene sulfonate as a dispersant
11
作者 Cheng-Long Wen Jun-Dong Xu +1 位作者 Xue-Man Wang Yu Fan 《Petroleum Science》 SCIE CAS CSCD 2021年第2期654-666,共13页
To enhance the gasoline octane number,low-octane linear n-alkanes should be converted into their high-octane di-branched isomers via n-alkane hydroisomerization.Therefore,hierarchical SAPO-11-based catalysts are prepa... To enhance the gasoline octane number,low-octane linear n-alkanes should be converted into their high-octane di-branched isomers via n-alkane hydroisomerization.Therefore,hierarchical SAPO-11-based catalysts are prepared by adding different contents of sodium dodecylbenzene sulfonate(SDBS),and they are applied in n-nonane hydroisomerization.When n(SDBS)/n(SiO2)is less than or equal to 0.125,the synthesized hierarchical molecular sieves are all pure SAPO-11,and as the SDBS content increases,the submicron particle size decreases,and the external surface area(ESA)increases.Additionally,these hierarchical SAPO-11 have smaller submicron particles and higher ESA values than conventional SAPO-11.When n(SDBS)/n(SiO2)is greater than 0.125,with increasing SDBS content(n(SDBS)/n(SiO2)=0.25),the synthesized SAPO-11 contains amorphous materials,which leads to a decline in the ESA;with the further increase in SDBS content(n(SDBS)/n(SiO2)=0.5),the products are all amorphous materials.These results indicate that in the case of n(SDBS)/n(SiO2)=0.125,the synthesized SAPO-11 molecular sieve(S–S3)has the most external Brønsted acid centers and the highest ESA of these SAPO-11,and these advantages favor generation of the di-branched isomers in hydrocarbon hydroisomerization.Among these Pt/SAPO-11 catalysts,Pt/S–S3 displays the highest selectivity to entire isomers(83.4%),the highest selectivity to di-branched isomers(28.1%)and the minimum hydrocracking selectivity(15.7%)in n-nonane hydroisomerization. 展开更多
关键词 SAPO-11 molecular sieve n-Nonane hydroisomerization External surface area External Brønsted acid centers Selectivity to di-branched isomers
下载PDF
Hydroisomerization of n-heptane over bimetal-bearing H_3PW_(12)O_(40) catalysts supported on dealuminated USY zeolite 被引量:5
12
作者 WEI RuiPing1,2, GU YanBo1 & WANG Jun1 1 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Uni- versity of Technology, Nanjing 210009, China 2 College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China 《Science China Chemistry》 SCIE EI CAS 2008年第2期120-127,共8页
The bimetal-bearing (CePt or LaPt) 12-tungstophosphoric acid (H3PW12O40 (PW)) catalysts supported on dealuminated USY zeolite (DUSY) were prepared by impregnation and characterized by XRD, BET, IR, and H2-chemisorptio... The bimetal-bearing (CePt or LaPt) 12-tungstophosphoric acid (H3PW12O40 (PW)) catalysts supported on dealuminated USY zeolite (DUSY) were prepared by impregnation and characterized by XRD, BET, IR, and H2-chemisorption. Their catalytic activities were tested in the hydroisomerization of n-heptane with a continuous atmospheric fixed-bed reactor. After the steam treatment combined with the acid leaching, as well as the supporting with PW and the bimetals, the DUSY support retains the Y zeolite porosity and the PW well keeps its Keggin structure in catalysts. The doping of Ce into the catalysts enhances the dispersion of Pt on the catalyst surface. The Pt-bearing PW catalysts doped with Ce or La, especially Ce, exhibit much higher catalytic activity and selectivity than the catalysts without dopants at lowered reaction temperatures. At the optimal reaction conditions, i.e., the reaction temperature of 250℃ and WHSV of 1.4 h1, the catalyst with a Pt loading of 0.4%, PW loading of 10% and a molar ratio of Ce to Pt of 15:1 shows a conversion of n-heptane of 70.3% with a high selectivity for isomerization products of 94.1%. 展开更多
关键词 hydroisomerization of N-HEPTANE BIMETAL catalyst HETEROPOLY acid USY platinum
原文传递
The synergic effects of highly selective bimetallic Pt-Pd/SAPO-41 catalysts for the n-hexadecane hydroisomerization 被引量:4
13
作者 Guozhi Jia Chunmu Guo +6 位作者 Wei Wang Xuefeng Bai Xiaomeng Wei Xiaofang Su Tong Li Linfei Xiao Wei Wu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2021年第5期1111-1124,共14页
The hydroisomerization of n-hexadecane over Pt-Pd bimetallic catalysts is an effective way to produce clean fuel oil.This work reports a useful preparation method of bimetallic bifunctional catalysts by a co-impregnat... The hydroisomerization of n-hexadecane over Pt-Pd bimetallic catalysts is an effective way to produce clean fuel oil.This work reports a useful preparation method of bimetallic bifunctional catalysts by a co-impregnation or sequential impregnation process.Furthermore,monometallic catalysts with loading either Pt or Pd are also prepared for comparison.The effects of the metal species and impregnation order on the characteristics and catalytic performance of the catalysts are investigated.The catalytic test results indicate that the maximum iso-hexadecane yield over different catalysts increases as follows:Pt/silicoaluminophosphate SAPO-41<Pd/SAPO-41<Pt^(*)-Pd/SAPO-41(prepared by sequential impregnation)<Pt-Pd/SAPO-41(prepared by co-impregnation).Owing to the synergic effects between Pt and Pd,the Pt-Pd/SAPO-41 catalyst prepared by the co-impregnation method demonstrates the effective promotion of(de)hydrogenation activity.Therefore,this catalyst exhibits the highest iso-hexadecane yield of 89.4%when the n-hexadecane conversion is 96.3%.Additionally,the Pt-Pd/SAPO-41 catalyst also presents the highest catalytic activity and best stability even after 150 h long-term tests. 展开更多
关键词 SAPO-41 molecular sieve Pt-Pd bimetallic site bifunctional catalysts N-HEXADECANE hydroisomerization
原文传递
An egg-shell bifunctional CeO_(2)-modified NiPd/Al_(2) O_(3) catalyst for petrochemical processes involving selective hydrogenation and hydroisomerization
14
作者 Franklin J.Mendez Javier A.Alves +6 位作者 Yahse Rojas-Challa Oscar Corona Yanet Villasana Julia Guerra German Garcia-Colli Osvaldo M.Martinez Joaquin L.Brito 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第11期1382-1388,I0003,共8页
The catalytic performance during the 1-butyne hydrogenation using two reduced Al_(2) O_(3)-supported Pdbased catalysts was carried out in a total recirculation system with an external fixed-bed reactor.The lab-prepare... The catalytic performance during the 1-butyne hydrogenation using two reduced Al_(2) O_(3)-supported Pdbased catalysts was carried out in a total recirculation system with an external fixed-bed reactor.The lab-prepared egg-shell NiPd/CeO_(2)-Al_(2) O_(3) catalyst(NiPdCe) with Pd loading=0.5 wt%,Ni/Pd atomic ratio=1 and CeO_(2) loading=3 wt% was synthesized and characterized,and it was compared with an egg-shell Al_(2) O_(3)-supported Pd based commercial catalyst(PdCC).The reduced catalysts were characterized by X-ray diffraction,X-ray photoelectron spectroscopy,and high-resolution transmission electron microscopy.The textural characteristics and ammonia temperature-programmed desorption profiles of the fresh(unreduced) catalysts were also obtained.Both catalysts show high 1-butyne conversion and selectivity to 1-butene,but the catalysts also present important differences between hydroisomerizing and hydrogenating capabilities.NiPdCe catalyst shows higher capability for hydroisomerization reactions,while the PdCC catalyst exhibits higher hydrogenating capability.The observed catalytic performances can be interesting for some industrial processes and can provide a guideline for the development of a Pd-based catalyst with specific catalytic properties. 展开更多
关键词 1-Butyne Bifunctional catalyst Egg-shell HYDROGENATION hydroisomerization NiPd catalyst
原文传递
Kinetic model for hydroisomerization reaction of C_(8)-aromatics
15
作者 Ouguan XU Hongye SU +1 位作者 Xiaoming JIN Jian CHU 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2008年第1期10-16,共7页
Based on the reported reaction networks,a novel six-component hydroisomerization reaction net-work with a new lumped species including C_(8)-naphthenes and C_(8)-paraffins is proposed and a kinetic model for a commerc... Based on the reported reaction networks,a novel six-component hydroisomerization reaction net-work with a new lumped species including C_(8)-naphthenes and C_(8)-paraffins is proposed and a kinetic model for a commercial unit is also developed.An empirical catalyst deactivation function is incorporated into the model accounting for the loss in activity because of coke forma-tion on the catalyst surface during the long-term opera-tion.The Runge-Kutta method is used to solve the ordinary differential equations of the model.The reaction kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential vari-able metric optimization method(BFGS).The kinetic model is validated by an industrial unit with sets of plant data under different operating conditions and simulation results show a good agreement between the model predic-tions and the plant observations. 展开更多
关键词 C_(8)-aromatics hydroisomerization reaction network kinetic model catalyst deactivation function parameter estimation
原文传递
Physicochemical and isomerization property of Pt/SAPO-11 catalysts promoted by rare earths 被引量:5
16
作者 刘维桥 尚通明 +2 位作者 周全发 任杰 孙予罕 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期937-942,共6页
Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffracti... Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffraction(XRD),nitrogen adsorption,temperature-programmed desorption of ammonia(NH3-TPD),and Fourier transform infrared spectroscopy(FT-IR) techniques.The results showed that with the addition of rare earths the BET surface areas,pore volume,the amount of Bronsted acid and the total acidity of catalysts decreased slightly.However,the additive addition could lead to an increase in the amount of Lewis acid.Meanwhile,the introduction of additive was feasible to promote the dispersity of Pt.In addition,the hydroisomerization of n-heptane over different catalysts was studied.Compared with Pt/SAPO-11,LaPt/SAPO-11 or CePt/SAPO-11 showed higher catalytic activity and yield of i-C7 due to its higher Pt dispersion. 展开更多
关键词 Pt/SAPO-11 catalyst N-HEPTANE hydroisomerization rare earths
下载PDF
n-Heptane Isomerization over the Shaped Catalyst Pt/WO_(3)- ZrO_(2) and the Role of the Pseudo-Boehmite Binder
17
作者 Song Yueqin Zhou Sinong +2 位作者 Wang Zhaohui Zhou Xiaolong Xiong Yiya 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第3期32-43,共12页
The present paper reports new results regarding the addition of pseudo-boehmite as a binder during the synthesis of shaped Pt/WO_(3)-ZrO_(2)-Al_(2)O_(3) (PtWZA) catalysts. Binder shaping can noticeably influence not o... The present paper reports new results regarding the addition of pseudo-boehmite as a binder during the synthesis of shaped Pt/WO_(3)-ZrO_(2)-Al_(2)O_(3) (PtWZA) catalysts. Binder shaping can noticeably influence not only the structure and acidity of catalyst and improve its catalytic performance with regard to n-heptane isomerization, but the mechanical strength of the catalyst. A suitable binder content can improve the isomerization activity or selectivity by changing the acidity of PtWZA. The influence of the binder content depends on the WO_(3) content of the catalyst. PtWZA catalysts that contain 5%-15% binder on a dry basis exhibit favorable isomerization performance that depends on WO_(3) content. Suitable catalysts include Pt20WZ5A and Pt30WZ15A, which provide conversions of approximately 80%-90% and a selectivity of 90%. These new findings enrich researcher knowledge of the effect of the binder on the catalyst shaping process and are useful in the production of industrial catalysts. 展开更多
关键词 hydroisomerization PT zirconia tungstate BINDER N-HEPTANE
下载PDF
Synthesis of hierarchical SAPO-11-based catalysts with Al-based metal-organic framework derivative as mesoporogen to improve n-decane branched isomerization
18
作者 Xue-Man Wang Cheng-Long Wen Yu Fan 《Petroleum Science》 SCIE CAS CSCD 2022年第6期3171-3181,共11页
Hierarchical SAPO-11 molecular sieve(ACS-11) was successfully synthesized employing the Al2O3/carbon(Al_(2)O_(3)/C) composite obtained through the pyrolysis of Al-based metal-organic framework(Al-MOF-96)as mesoporogen... Hierarchical SAPO-11 molecular sieve(ACS-11) was successfully synthesized employing the Al2O3/carbon(Al_(2)O_(3)/C) composite obtained through the pyrolysis of Al-based metal-organic framework(Al-MOF-96)as mesoporogen.Unlike other carbon-based mesoporogens with strong hydrophobicity,the Al_(2)O_(3)/C interacts with phosphoric acid and generates the AlPO_(4)/C structure,which promotes the Al2O3/C dispersion in the synthesis gel of SAPO-11 and avoids the phase separation between them.The Al_(2)O_(3)/C as mesoporogen decreases the crystallite size of SAPO-11 via preventing the aggregation of SAPO-11crystals.Additionally,the addition of Al_(2)O_(3)/C improves the Si distribution in the ACS-11 framework.Consequently,ACS-11 has smaller crystallites,more mesopores,and a greater amount of medium Bronsted acid centers than the conventional microporous SAPO-11 and the SAPO-11 synthesized using activated carbon as mesoporogen.The corresponding Pt/ACS-11 catalyst exhibits the maximal selectivity to multi-branched C10isomers(23.28%) and the minimal cracking selectivity(15.83%) in n-decane hydroisomerization among these catalysts.This research provides a new approach for preparing hierarchical silicoaluminophosphate molecular sieve-based catalysts to produce high-quality fuels. 展开更多
关键词 Hierarchical SAPO-11 Al_(2)O_(3)/C composite hydroisomerization Branched isomers
下载PDF
Preparation and Property of Ni/TiO<sub>2</sub>-SAPO-11 Catalyst for N-Heptane Isomerization
19
作者 Li Zhao Ye Hu +1 位作者 Yingjun Wang Shuqing Ma 《Modern Research in Catalysis》 2014年第3期63-67,共5页
For enhancing the activity of Ni/TiO2-SAPO-11 catalyst, SAPO-11, the precursor was prepared by hydrothermal crystallization, and TiO2-SAPO-11 complex carrier was prepared by sol-gel method, then Ni/TiO2-SAPO-11 was pr... For enhancing the activity of Ni/TiO2-SAPO-11 catalyst, SAPO-11, the precursor was prepared by hydrothermal crystallization, and TiO2-SAPO-11 complex carrier was prepared by sol-gel method, then Ni/TiO2-SAPO-11 was produced by the final product. The catalytic performance of Ni/TiO2-SAPO-11 was studied in n-heptane isomerization, and the impact of catalyst preparation conditions on n-heptane isomerization was discussed in detail. The results showed that, with 20% of TiO2 composition, 2% of Ni capacity percentage and calcined temperature at 500°C, conversion of n-heptane and isomerization selectivity was up to 40.94% and 88.97% respectively. 展开更多
关键词 SAPO-11 Molecular Sieve CATALYST hydroisomerization N-HEPTANE
下载PDF
One-pot synthesis of the highly efficient bifunctional Ni-SAPO-11 catalyst 被引量:4
20
作者 Yuchao Lyu Weilong Zhan +5 位作者 Zhumo Yu Xinmei Liu Ye Yang Xiaoxing Wang Chunshan Song Zifeng Yan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第17期86-94,共9页
Hydro isomerization of linear alkanes to branched isomers is an important petrochemical process for production of gasoline with high octane number.Non-noble metal bifunctional catalysts used in this process always suf... Hydro isomerization of linear alkanes to branched isomers is an important petrochemical process for production of gasoline with high octane number.Non-noble metal bifunctional catalysts used in this process always suffer from low metal dispersion and poor metal-acid synergy.Herein,a facile one-pot synthesis method was used to simultaneously regulate metal particle sizes and acidity of the Ni-SAPO-11 hydroisomerization catalyst.The physicochemical properties are investigated using XANES,EXAFS,TEM/STEM,FT-IR,XPS,UV-vis and NH_3-TPD.Apart from the highly dispersed nickel nanoparticles with an average diameter of 8 nm,the framework Ni~(2+)ions are generated via substituting framework Al~(3+)ions of the SAPO-11.The formed NiP-OH structures have lower deprotonation energy(DPE)than the SiAl-OH ones,contributing more and stronger acid sites to the Ni-SAPO-11 catalyst.The great metal-acid synergy including high metal to acid sites ratio(n_(Ni)/n_A)and close intimacy is obtained for the Ni-SAPO-11 catalyst.The Ni-SAPO-11 catalyst outperforms the counterpart prepared by the impregnation method and exhibits comparable activity and isomers selectivity to the Pt/SAPO-11 catalyst in the n-hexane hydroisomerization. 展开更多
关键词 One-pot synthesis Nickel SAPO-11 hydroisomerization Metal-acid synergy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部