期刊文献+
共找到15,337篇文章
< 1 2 250 >
每页显示 20 50 100
Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis
1
作者 Chao Wan Yu Liang +5 位作者 Liu Zhou Jindou Huang Jiapei Wang Fengqiu Chen Xiaoli Zhan Dang-guo Cheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期333-343,共11页
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ... The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond. 展开更多
关键词 Ammonia borane Hydrogen generation hydrolysis Cobalt phosphide nanosheets PHOTOCATALYSIS
下载PDF
In situ formed Mg(BH_(4))_(2) for improving hydrolysis properties of MgH_(2)
2
作者 Yongyang Zhu Mili Liu +6 位作者 liming Zeng Yin Wang Daifeng Wu Rui Li Qing Zhou Renheng Tang Fangming Xiao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1204-1214,共11页
The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O... The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O required to ensure complete hydrolysis are two key challenges for the MgH_(2) hydrolysis systems.Now,a low-cost method is reported to synthesize MgH_(2)@Mg(BH_(4))_(2) composite via ball-milling MgH_(2) with cheap and widely available B2O_(3)(or B(OH)3).By adding small amounts of B2O_(3),the in-situ formed Mg(BH_(4))_(2) could significantly promote the hydrolysis of MgH_(2).In particular,the MgH_(2)–10 wt%B2O_(3) composite releases 1330.7 mL·g^(−1) H_(2)(close to 80%theoretical hydrogen generation H_(2))in H_(2)O and 1520.4 mL·g^(−1) H_(2)(about 95%)in 0.5 M MgCl2 in 60 min at 26℃ with hydrolysis rate of 736.9 mL·g^(−1)·min^(−1) and 960.9 mL·g^(−1)·min^(−1) H_(2) during the first minute of the hydrolysis,respectively.In addition,the MgCl2 solution allows repeated use by filtering and exhibits high cycle stability(20 cycles),therefore leading to much reduced capacity loss caused by the excess H_(2)O.We show that by introducing B2O_(3) and recycling the 0.5 M MgCl2 solution,the system hydrogen capacity can approach 5.9 wt%,providing a promising hydrogen generation scheme to supply hydrogen to the fuel cells. 展开更多
关键词 hydrolysis MgH_(2) Mg(BH_(4))_(2) Hydrogen generation B2O_(3) MgCl2.
下载PDF
Preliminary Study on the Treatment Efficiency of Pasteurized Lime Thermal Alkaline Hydrolysis for Excess Activated Sludge and Reduction of Tetracycline Resistance Genes
3
作者 Maoxia Chen Qixuan Zhou +3 位作者 Jiayue Zhang Jiaoyang Li Wei Zhang Huan Liu 《Journal of Renewable Materials》 EI 2023年第10期3711-3723,共13页
Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge(EAS).Owing to strict environment laws and need for better energy utilization,new methods were developed in thi... Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge(EAS).Owing to strict environment laws and need for better energy utilization,new methods were developed in this study to improve the efficiency of pretreatment method.Direct thermal hydrolysis(TH),pasteurized thermal hydrolysis(PTH),and alkaline pasteurized thermal hydrolysis(PTH+CaO and PTH+NaOH)methods were used to treat EAS.Each method was compared and analyzed in terms of dissolution in ammonium nitrogen(NH_(4)^(+)-N)and soluble COD(SCOD)in EAS.Furthermore,the removal of tetracycline resistance genes(TRGs)and class 1 transposon gene intI1 from EAS was investigated.The NH_(4)^(+)-N and SCOD concentrations in EAS treated by PTH were 1.24 and 2.58 times higher than those of TH.However,the removal efficiency of total TRGs and intI1 between the groups was comparable.The SCOD concentration of the PTH+NaOH group was 4.37 times higher than that of the PTH group,and the removal efficiency of total TRGs was increased by 9.52%compared with that by PTH.The NH_(4)^(+)-N and SCOD concentrations of the PTH+CaO group could reach 85.04%and 92.14%of the PTH+NaOH group,but the removal efficiency of total TRGs by PTH+CaO was 19.78%lower than that by PTH+NaOH.Thus,to reduce the financial cost in actual operation,lime(CaO)can be used instead of a strong alkali(NaOH),and pasteurized steam at 70℃ instead of conventional high-temperature heating to treat EAS.This study provides a reference for the development of alkaline hydrolysis under moderate temperatures along with the removal of TRGs in EAS. 展开更多
关键词 Excess activated sludge tetracycline resistance genes thermal alkaline hydrolysis LIME pasteurized thermal hydrolysis
下载PDF
Enzymatic hydrolysis of silkworm pupa and its allergenicity evaluation by animal model with different immunization routes 被引量:3
4
作者 Yan Dai Meijia Huang +7 位作者 Yujuan Xu Lixia Mu Jingyan Gao Hongbing Chen Zhihua Wu Anshu Yang Yong Wu Xin Li 《Food Science and Human Wellness》 SCIE CSCD 2023年第3期774-782,共9页
Silkworm pupa is a nourishing food with high nutritional value,but its consumption has been greatly limited given its allergenicity.Enzyme hydrolytic technique is recognized as an effective method to reduce the allerg... Silkworm pupa is a nourishing food with high nutritional value,but its consumption has been greatly limited given its allergenicity.Enzyme hydrolytic technique is recognized as an effective method to reduce the allergenicity of protein.In this study,we aimed to investigate the effect of enzymolysis on the allergenicity of silkworm pupa.Crude silkworm pupa protein was extracted through alkali extraction and acid precipitation,which included 5 proteins with the molecular weights ranging from 34 kDa to 76 kDa,and silkworm pupa were then hydrolyzed by alkaline protease.The allergenicity of silkworm pupa protein and its enzymatic hydrolysates was evaluated by establishing BALB/c mice model,and the mice were immunized via intragastric gavage and intraperitoneal injection,respectively.The results indicated that the intraperitoneal inj ection immunization route induced more by detecting with antibodies,histamine and Th2-related cytokines.Moreover,mice treated with silkworm pupa protein peptide displayed no obvious allergic symptoms,indicating that enzyme hydrolytic technique could significantly reduce the allergenicity of silkworm pupa. 展开更多
关键词 Silkworm pupa Silkworm pupa peptides Enzymatic hydrolysis ALLERGENICITY IMMUNIZATION Animal model
下载PDF
Effect of acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust in subcritical water
5
作者 Wei Yang Yalun Ma +6 位作者 Xu Zhang Fan Yang Dong Zhang Shengji Wu Huanghu Peng Zezhou Chen Lei Che 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期195-204,共10页
The effects of sulfuric acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust were investigated in this study.Sulfuric acid could act as an acidic catalyst to depolymerize holocellulose th... The effects of sulfuric acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust were investigated in this study.Sulfuric acid could act as an acidic catalyst to depolymerize holocellulose through cleavage of the glycosidic bonds,the dissociation energies of which were supplied by the impact of a ball on pine sawdust,during milling.The destruction of glycosidic and hydrogen bonds in pine sawdust resulted in a decrease of crystallinity and an increase of water solubility.The sulfuric acid could promote the hydrolysis of holocellulose and its hydrolysis products.It also destroyed the chemical linkages between holocellulose and lignin during ball milling.The cleavage of chemical linkages with holocellulose made lignin more difficult to hydrolyze in subcritical water,and higher activation energy was needed to hydrolyze pretreated pine sawdust at higher reaction temperatures.It also led to the formation of glucose char and aromatic-linked polymer char from the hydrolysis products of holocellulose. 展开更多
关键词 Acid-associated mechanical pretreatment Subcritical water Pine sawdust hydrolysis behavior Kinetic parameters
下载PDF
Hydrogel-based catalysts for hydrogen generation by the hydrolysis of B–H compounds under external physical fields
6
作者 Chunling Qin Wenliu Wu +4 位作者 Hassanien Gomaa Shuai Wu Cuihua An Qibo Deng Ning Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期518-535,I0011,共19页
Hydrogen is a popular clean high-energy-density fuel.However,its utilization is limited by the challenges toward low-cost hydrogen production and safe hydrogen storage.Fortunately,these issues can be addressed using p... Hydrogen is a popular clean high-energy-density fuel.However,its utilization is limited by the challenges toward low-cost hydrogen production and safe hydrogen storage.Fortunately,these issues can be addressed using promising hydrogen storage materials such as B–H compounds.Hydrogen stored in B–H compounds can be released by hydrolysis at room temperature,which requires catalysts to increase the rate of the reaction.Recently,several effective approaches have been developed for hydrogen generation by catalyzing the hydrolysis of B–H compounds.This review summarizes the existing research on the use of nanoparticles loaded on hydrogels as catalysts for the hydrolysis of B–H compounds.First,the factors affecting the hydrolysis rate,such as temperature,p H,reactant concentration,and type of nano particles,were investigated.Further,the preparation methods(in situ reduction,one-pot method,template adsorption,etc.)for the hydrogel catalysts and the types of loaded catalysts were determined.Additionally,the hydrogel catalysts that can respond to magnetic fields,ultrasound fields,optical fields,and other physical fields are introduced.Finally,the issues and future developments of hydrogel-based catalysts are discussed.This review can inspire deeper investigations and provide guidance for the study of hydrogel catalysts in the field of hydrogen production via hydrolysis. 展开更多
关键词 HYDROGEL Nanoparticlec atalyst B-H compounds hydrolysis reaction External physical field
下载PDF
Effects of Potassium Ferrate and Low-Temperature Thermal Hydrolysis Co-Pretreatment on the Hydrolysis and Anaerobic Digestion Process of Waste Activated Sludge
7
作者 MA Yingpeng HAO Di +3 位作者 YAO Shuo ZHANG Dahai LI Xianguo FENG Lijuan 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1583-1591,共9页
This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobi... This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobic digestion process.The analytical investigations showed that co-pretreatment significantly facilitated the hydrolysis process of the sludge and contributed to the accumulation of short-chain fatty acids(SCFAs).The pretreatment conditions under the optimal leaching of organic matter from sludge were hydrothermal temperature of 75℃,hydrothermal treatment time of 12 h,and PF dosage of 0.25 g g^(−1)TSS(total suspended solids),according to the results of orthogonal experiments.By pretreatment under proper conditions,the removal rate of soluble chemical oxygen demand(SCOD)achieved 71.8%at the end of fermentation and the removal rate of total phosphorus(TP)was 69.1%.The maximum yield of SCFAs was 750.3 mg L^(−1),7.45 times greater than that of the blank group.Based on the analysis of the anaerobic digestion mechanism,it was indicated that the co-pretreatment could destroy the floc structure on the sludge surface and improve organic matter dissolving,resulting in more soluble organic substances for the acidification process.Furthermore,microbial community research revealed that the main cause of enhanced SCFAs generation was an increase in acidogenic bacteria and a reduction of methanogenic bacteria. 展开更多
关键词 waste activated sludge potassium ferrate low-temperature thermal hydrolysis anaerobic digestion short-chain fatty acids
下载PDF
Structural and antioxidative properties of royal jelly protein by partial enzymatic hydrolysis
8
作者 Shanshan Li Lingchen Tao +3 位作者 Shiqin Peng Xinyu Yu Xiaobin Ma Fuliang Hu 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1820-1827,共8页
The objective of this study was to investigate the structural and antioxidative properties of royal jelly protein(RJP)at different degrees of hydrolysis(DH)by partial enzymatic hydrolysis. RJP was hydrolyzed by alcala... The objective of this study was to investigate the structural and antioxidative properties of royal jelly protein(RJP)at different degrees of hydrolysis(DH)by partial enzymatic hydrolysis. RJP was hydrolyzed by alcalase for 0 min, 15 min, 1 h, 5 h and 8 h to obtain hydrolysates at DH of 5.34%, 11.65%, 15.19%, 21.38% and 23.91%, respectively. With the increased DH, the RJP hydrolysates showed elevated antioxidative activities. The molecular weight of RJP hydrolysates was significantly decreased but their primary backbone kept unchanged. Analysis of circular dichroism spectra revealed that the enzymolysis reduced the content of α-helix but increased the contents of β-sheet, β-turn and random coil. Meanwhile, the surface hydrophobicity and fluorescence intensity of RJP hydrolysates were decreased and a red shift occurred. As the enzymolysis continued, the surface morphology of RJP was gradually changed from a sheet-like structure into microparticles. Changes in antioxidative activities and structures generally followed a DH-dependent manner, however these changes became insignificant for samples at DH beyond 20%. Taking into consideration of both effectiveness and productivity, the optimum enzymatic duration was determined at 5 h. 展开更多
关键词 Royal jelly protein Acalase Enzymatic hydrolysis Antioxidative activity STRUCTURE
下载PDF
Oxygen vacancy defects engineering on Cu-doped Co_(3)O_(4) for promoting effective COS hydrolysis
9
作者 Guanyu Mu Yan Zeng +5 位作者 Yong Zheng Yanning Cao Fujian Liu Shijing Liang Yingying Zhan Lilong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期831-841,共11页
The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of... The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of the catalysts.In situ DRIFTS and XPS spectra reveal that COS and H_(2)O are adsorbed and activated by oxygen vacancy.The 10 at%Cu doped Co_(3)O_(4) sample(10Cu-Co_(3)O_(4))exhibits the optimal activity,100%of COS conversion at 70℃.The improved oxygen vacancies of CueCo_(3)O_(4) accelerate the activation of H_(2)O to form active -OH.COS binds with hydroxyl to form the intermediate HSCO^(-)_(2),and then the activated-OH on the oxygen vacancy reacts with HSCO^(-)_(2) to form HCO^(-)_(3).Meanwhile,the catalyst exhibits high catalytic stability because copper species(Cu+/Cu^(2+))redox cycle mitigate the sulfation of Co_(3)O_(4)(Co^(2+)/Co^(3+)).Our work offers a promising approach for the rational design of cobalt-related catalysts in the highly efficient hydrolysis COS process. 展开更多
关键词 Oxygen vacancy COS hydrolysis In situ spectra Cu doped Co_(3)O_(4)
下载PDF
Catalytic Hydrolysis of CFC-12 over MoO_(3)/ZrO_(2)-TiO_(2)
10
作者 谭小芳 ZHOU Tong +3 位作者 LI Zhiqian REN Guoqing JIA Lijuan 刘天成 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期59-64,共6页
Solid acid MoO_(3)/ZrO_(2)-TiO_(2)catalysts were prepared by impregnation method,and catalytic hydrolysis of difluorodichloromethane(CFC-12)over the catalyst was studied.The presence of MoO_(3)/ZrO_(2)-TiO_(2)catalyst... Solid acid MoO_(3)/ZrO_(2)-TiO_(2)catalysts were prepared by impregnation method,and catalytic hydrolysis of difluorodichloromethane(CFC-12)over the catalyst was studied.The presence of MoO_(3)/ZrO_(2)-TiO_(2)catalyst in polycrystalline state could be clearly observed by transmission electron microscopy(TEM).Mesopores were detected by N2 adsorption-desorption isotherms which further confirmed the MoO_(3)/ZrO_(2)-TiO_(2)structural characteristics of catalyst.The results of NH_(3)-TPD showed that the calcination temperatures had a great influence on the acidity of the catalyst,and the weak acidic site had a strong catalytic activity for the catalytic hydrolysis of CFC-12.Moreover,ZrO_(2)-TiO_(2)was highly dispersed in the MoO_(3)framework,suggested by powder X-ray diffraction(XRD)and N_(2)adsorption-desorption results.The effects of the catalyst calcination temperatures on the conversion rate of CFC-12 were studied.The effects of catalytic hydrolysis temperatures and water vapor concentration on the catalytic hydrolysis rate of CFC-12 were also studied.The solid acid MoO_(3)/ZrO_(2)-TiO_(2)was calcined at 500℃for 3 h at a catalytic hydrolysis temperature of 400℃and water vapor concentration of 83.18%,and catalytic hydrolysis rate of CFC-12 reached 98.65%.The hydrolysis rate of CFC-12 remained above 65.34%after 30 hours continuous reaction. 展开更多
关键词 catalytic hydrolysis difluorodichloromethane(CFC-12) MoO_(3)/ZrO_(2)-TiO_(2) solid acid catalyst
原文传递
Glucosinolates and Their Hydrolysis Products in Arabidopsis thaliana Influence Performance and Feeding Choice of Pieris rapae and Spodoptera exigua
11
作者 Julie A. Kemarly-Dowland Maria Gabriela Bidart 《Advances in Entomology》 2023年第4期285-299,共15页
Glucosinolates and their hydrolysis products, found in plants of the order Brassicales, are well-known for their defensive properties against insect herbivores. Arabidopsis thaliana (Col-0) genetic lines with mutation... Glucosinolates and their hydrolysis products, found in plants of the order Brassicales, are well-known for their defensive properties against insect herbivores. Arabidopsis thaliana (Col-0) genetic lines with mutations that modify the type of glucosinolates (i.e. myb28myb29 and cyp79B2cyp79B3 are deficient in the production of aliphatic and indolyl glucosinolates, respectively) make it possible to test for the specific effects of these secondary chemicals on insect herbivores. The Pad3 mutant (deficient in camalexin), which has a role in resistance to pathogens, was also tested. Likewise, the effects of different glucosinolate hydrolysis products can be evaluated using genetically modified (GM) lines of the wild type Col-0 ecotype, which naturally produces isothiocyanates. These GM lines include the nitrile-producing 35S: ESP and the double knockout tgg1tgg2, which virtually lacks hydrolysis products. In both no-choice and choice experiments, the crucifer specialist Pieris rapae was virtually unaffected by differences in the type of glucosinolates or hydrolysis products. In contrast, the generalist insect Spodoptera exigua had statistically significant increases in pupae/adult weight and faster developmental times when reared on mutants deficient in the production of aliphatic and indolyl glucosinolates and their hydrolysis products. There were no differences in the performance of either insect species when reared on wild type Col-0 or Pad3. Results from feeding choice trials showed that Pieris rapae had no statistically significant preference for any of the genetic lines. In contrast, Spodoptera exigua had a significant feeding preference for the double mutant tgg1tgg2. This study provides evidence that variation in the type of glucosinolates and their hydrolysis products can influence insect performance and feeding choices, and that responses are species-specific. 展开更多
关键词 Arabidopsis thaliana GLUCOSINOLATES hydrolysis Products Specialist and Generalist Insects
下载PDF
Wet Oxidation Pretreatment of Poplar Waste for Enhancing Enzymatic Hydrolysis Efficiency 被引量:3
12
作者 GuiGan Fang ShanShan Liu +1 位作者 KuiZhong Shen Yan Lin 《Paper And Biomaterials》 2017年第2期8-17,共10页
In this paper, we described the optimization of the wet oxidation pretreatment conditions to enhance enzymatic hydrolysis efficiency, using poplar waste from the stock section of a paper mill as the raw material. We s... In this paper, we described the optimization of the wet oxidation pretreatment conditions to enhance enzymatic hydrolysis efficiency, using poplar waste from the stock section of a paper mill as the raw material. We showed that the optimal conditions of the pretreatment for poplar waste were an initial p H value of 10, a temperature of 195℃, a holding time of 15 min, and an oxygen pressure of 1.2 MPa. In this case, the yield of the obtained solid material produced by the process was 51.7% and the reducing sugar yield was 46.8%. The solid part obtained from the pretreatment process was hydrolyzed by cellulase L-10. The optimal enzymatic conditions were a temperature of 49℃, a duration time of 56 h, an enzyme dosage of 38 FPU/g at a p H value of 4.8, and a solid-to-liquor ratio of 1∶50. The resulting cellulose conversion rate reached 96.4% in terms of the pretreated substances. In addition, a chemical composition analysis of the poplar waste and pretreated material indicated that about 92% of the hemicelluloses and 43% of the lignin in the raw material were degraded and dissolved. In addition, the crystallization decreased from 57.5% to 54.8%. An obvious fibrillation of the fiber pretreated by the wet oxidization process was observed by SEM. Moreover, high-performance liquid chromatography(HPLC) results showed a high xylose content and monosaccharide degradation products in the pretreatment solution. In conclusion, the wet oxidation pretreatment process could efficiently degrade or remove the lignin and hemicellulose, as well as reduce the crystallinity of the lignocellulosic material, which resulted in animprovement of the enzymatic ability and an increase in the cellulose conversion rate. 展开更多
关键词 poplar waste wet oxidation pretreatment enzymatic hydrolysis efficiency cellulase hydrolysis
下载PDF
Gas chromatography-mass spectrometry method for determination ofβ-propiolactone in human inactivated rabies vaccine and its hydrolysis analysis 被引量:5
13
作者 Shuo Lei Xun Gao +2 位作者 Yang Sun Xiangyong Yu Longshan Zhao 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2018年第6期373-377,共5页
A simple method was established for the determination of β-propiolactone(BPL) in human inactivated rabies vaccine by gas chromatography-mass spectrometry(GC-MS). The determination was performed on an Agilent HP-INNOW... A simple method was established for the determination of β-propiolactone(BPL) in human inactivated rabies vaccine by gas chromatography-mass spectrometry(GC-MS). The determination was performed on an Agilent HP-INNOWAX(30 m ? 0.32 mm i.d., 0.25 mm) capillary column at the temperature of 80 °C.Electrospray ionization(ESI) was used by selective ion detection at m/z 42. The temperature for ESI source and inlet was set at 230 °C and 200 °C, respectively. Helium was used as the carrier gas at a flow rate of 25.1 m L/min. The total run time was 8 min. Acetonitrile and other components in the sample did not interfere with the determination of BPL. The results showed good linearity of BPL in the range of0.50–10.01 μg/mL, with the limit of detection and the limit of quantification of 0.015 μg/mL and0.050 μg/mL, respectively. Satisfactory precision was achieved for the current developed method. The method was applied to detect 6 batches of vaccine samples, and the results indicated that the target analyte BPL was present in three batches of unpurified samples, but was not detected in the purified samples, indicating the test samples were qualified. The established method was proved to be simple,versatile and sensitive, which can meet the requirements of quality control of BPL in human inactivated rabies vaccine. 展开更多
关键词 β-propiolactone INACTIVATED HUMAN RABIES VACCINE GC-MS hydrolysis
下载PDF
Species analysis methods for hydrolysis polymerization of aluminum 被引量:3
14
作者 Feng Li, Luan Zhao kun, Tang Hong xiao Research Center for Eco Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第1期33-38,共6页
SpeciesanalysismethodsforhydrolysispolymerizationofaluminumFengLi,LuanZhaokun,TangHongxiaoResearchCenterfo... SpeciesanalysismethodsforhydrolysispolymerizationofaluminumFengLi,LuanZhaokun,TangHongxiaoResearchCenterforEcoEnvironmenta... 展开更多
关键词 hydrolysis POLYMERIZATION SPECIES of AL 27 AL NMR AL Ferron TIMED complex COLORIMETRIC method.
下载PDF
The Effect of Hydrolysis with Neutrase on Molecular Weight,Functional Properties,and Antioxidant Activities of Alaska Pollock Protein Isolate 被引量:3
15
作者 LIU Chuyi MA Xiaoming +2 位作者 CHE Shuai WANG Changwei LI Bafang 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第6期1423-1431,共9页
In this study, the Alaska pollock protein isolate(APPI) was hydrolyzed by Neutrase for 20, 40, 80, 120, 160, 200, and 240 min. Hydrolysates with different molecular weights were produced and they were named as H1–H7.... In this study, the Alaska pollock protein isolate(APPI) was hydrolyzed by Neutrase for 20, 40, 80, 120, 160, 200, and 240 min. Hydrolysates with different molecular weights were produced and they were named as H1–H7. Furthermore, the effects of hydrolysis on the average molecular weights, functional properties(solubility, oil-holding capacities, foaming activities, and emulsifying properties), and antioxidant activities(1, 1-diphenyl-2-picrylhydrazyl, superoxide, and hydroxyl free radical-scavenging activities) were determined. It was found that when the degree of hydrolysis(DH) increased, the average molecular weights of the hydrolysates decreased significantly. The functional properties of APPI were also significantly improved. The hydrolysates of APPI exhibited better solubility, emulsifying activities, and foaming activities. Hydrolysates with low molecular weights(<1 kDa) had better solubility, oil-holding capacities, and emulsifying activities, while hydrolysates with higher molecular weights(>1 kDa) had better foaming activities. In addition, the hydrolysates exhibited excellent antioxidant properties, while the inhibition values of 1, 1-diphenyl-2-picryl hydroxyl(DPPH), superoxide, and hydroxyl free radical-scavenging activities, were 85.22%, 53.56%, and 75.00% respectively, when the concentration of the hydrolysates was 5.0 mg mL^(-1). The lower the average molecular weight was, the higher was the antioxidant activity. These results indicated that hydrolysis with Neutrase is an effective method for improving the functional and antioxidant properties of APPI. The hydrolysates of APPI displayed great potentials to be used as natural antioxidants in protein-rich aqueous foods such as nutrient supplements and sports beverages. 展开更多
关键词 Alaska POLLOCK protein isolate(APPI) SOLUBILITY ENZYMATIC hydrolysis functional properties
下载PDF
Hydrolysis of mechanically pre-treated cellulose catalyzed by solid acid SO4^2--TiO2 in water–ethanol solvent 被引量:3
16
作者 Xingyilong Zhang Houfang Lu +4 位作者 Kejing Wu Yingying Liu Changjun Liu Yingming Zhu Bin Liang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第1期136-142,共7页
An efficient catalyst SO4^2--TiO2(ST) from industrial metatitanic acid has been successfully prepared to catalyze hydrolysis of ball-milling cellulose. The results show that the highest catalytic efficiency is obtaine... An efficient catalyst SO4^2--TiO2(ST) from industrial metatitanic acid has been successfully prepared to catalyze hydrolysis of ball-milling cellulose. The results show that the highest catalytic efficiency is obtained for ST calcined at 450 ℃(ST-450) with the yield of 21.8% glucose, 13.0% 5-HMF and 4.2% furfural at 200 ℃ for30 min. The ball milling of cellulose and solid acid catalyst significantly enhances the cellulose hydrolysis. The high Lewis to Bronsted acid sites ratio for ST-450 induced by bidentate ligands between SO4^2-and TiO2 benefits high organics yield, and high total acid sites contribute to the high cellulose conversion. The large pore volume of 0.29 cm^3·g^-1 and appropriate pore size of 7.35 nm of ST-450 also contribute to the high performance. High reaction temperature over 200 ℃ exhibits negative effect on glucose and 5-HMF yield due to undesired side reactions, while furfural product is stable in the reaction system. The bidentate ligands between SO4^2-and TiO2 are considered as active acid sites for cellulose hydrolysis in water–ethanol solvents. 展开更多
关键词 CELLULOSE Industrial metatitanic ACID Solid ACID TiO2 hydrolysis Ball MILLING
下载PDF
Pretreatment of agricultural residues by supercritical CO_2 at 50–80 °C to enhance enzymatic hydrolysis 被引量:3
17
作者 Meng-jiao Zhao Qin-qin Xu +4 位作者 Guo-min Li Qiao-zhi Zhang Dan Zhou Jian-zhong Yin Hua-shu Zhan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第4期39-45,共7页
Various agricultural crop residues including corn stover,corn cob,and sorghum stalk with a moisture content of 75 wt%were subjected to a long pretreatment(12–60 h)with supercritical CO_2(scCO_2),at low temperature(50... Various agricultural crop residues including corn stover,corn cob,and sorghum stalk with a moisture content of 75 wt%were subjected to a long pretreatment(12–60 h)with supercritical CO_2(scCO_2),at low temperature(50–80°C)and a pressure of 17.5–25.0 MPa.The sugar yields from the enzymatic hydrolysis(EH)of the pretreated samples were as much as three-to fourfold greater than those afforded by the raw materials.However,when pretreatment was conducted within a short time(e.g.0.5 h),as previously reported in the literature,only a slight increase in the EH sugar yields was observed.The proposed sc CO_2pretreatment mechanism demonstrated the role of moisture in the system.Wetting,softening,and swelling were observed to mainly affect the lignocellulose when a suitable amount of water was added.Finally,the samples were analysed by X-ray diffraction and scanning electron microscopy,before and after pretreatment,to investigate the changes in the microscopic structure of the biomass. 展开更多
关键词 LIGNOCELLULOSE scCO2 PRETREATMENT ENZYMATIC hydrolysis SUGAR yield MOISTURE content
下载PDF
Peptide fraction from sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via MAPK and NF-κB pathways 被引量:6
18
作者 Ruichang Gao Wanghui Shu +5 位作者 Yang Shen Quancai Sun Wengang Jin Dajing Li Ying Li Li Yuan 《Food Science and Human Wellness》 SCIE 2021年第1期103-111,共9页
Previous studies have suggested that polypeptides extracted from milk, soybean, fish, eggs, and meat possess potential anti-inflammatory effects. To date, few studies have reported the anti-inflammatory function of st... Previous studies have suggested that polypeptides extracted from milk, soybean, fish, eggs, and meat possess potential anti-inflammatory effects. To date, few studies have reported the anti-inflammatory function of sturgeon peptides and their underlying mechanisms are unknown. The current study was therefore to determine the anti-inflammatory potential of sturgeon peptides with lipopolysaccharide (LPS)-induced RAW264.7 inflammatory model. Pepsin hydrolysate (PeH) was purified by ultrafiltration and Sephadex G-15 gel filtration chromatography. PeH significantly reduced the inflammatory mediator (NO) and inflammatory cytokines (IL-6, TNF-α and IL-1β) expression in a dose-dependent manner. Moreover, the purified sturgeon peptide (F2) possessed strong antioxidant potential and effectively inhibited DPPH and ABTS free radicals. F2 significantly suppressed the expression of MAPK, IκBα, and NF-κB p65, indicating that F2 exerted anti-inflammatory influence by the inhibition of MAPK and NF-κB pathways. 展开更多
关键词 STURGEON Enzymatic hydrolysis Antioxidant Anti-inflammation mechanism RAW264.7 macrophages
下载PDF
NMR Spectral Analysis and Hydrolysis Studies of Rebaudioside N, a Minor Steviol Glycoside of <i>Stevia rebaudiana</i>Bertoni 被引量:6
19
作者 Venkata Sai Prakash Chaturvedula Steven Chen +1 位作者 Oliver Yu Guohong Mao 《Food and Nutrition Sciences》 2013年第10期1004-1008,共5页
The complete proton and carbon NMR spectral assignments of a diterpene glycoside isolated from the commercial extract of the leaves of Stevia rebaudiana Bertoni, 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β... The complete proton and carbon NMR spectral assignments of a diterpene glycoside isolated from the commercial extract of the leaves of Stevia rebaudiana Bertoni, 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] entkaur-16-en-19-oic acid-[(2-O-α-L-rhamnopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl) ester] (1);also known as rebaudioside N, was achieved by the extensive 1D and 2D NMR (1H and 13C, COSY, HMQC, HMBC) as well as mass spectral data. Further, hydrolysis studies were performed on rebaudioside N using acid and enzymatic studies to identify aglycone and sugar residues in its structure. 展开更多
关键词 STEVIA rebaudiana Diterpene GLYCOSIDE Isolation Structure Elucidation Spectral Data hydrolysis STUDIES
下载PDF
Oscillating Cellulase Adsorption and Enhanced Lignocellulose Hydrolysis upon Ultrasound Treatment 被引量:3
20
作者 Rongxin Su Renjun Yang +4 位作者 Yang Jifeng Ruoyu Du Renliang Huang Wei Qi Zhimin He 《Transactions of Tianjin University》 EI CAS 2017年第1期11-19,共9页
We investigated the effects of ultrasound treatment on cellulase adsorption and lignocellulose hydrolysis.The activity of cellulase remained constant upon lowpower ultrasound treatment(<120 W) and decreased using h... We investigated the effects of ultrasound treatment on cellulase adsorption and lignocellulose hydrolysis.The activity of cellulase remained constant upon lowpower ultrasound treatment(<120 W) and decreased using high-power ultrasound(>280 W).Oscillating cellulase adsorption occurred upon ultrasound treatment with any intensity.The maxima for desorption and adsorption were41.9 and 83.1%,respectively,during 1 h of 90 W ultrasound treatment at 50 °C.A comparison between the shorttime with long-time ultrasound experiments indicated that ultrasound treatment tended to desorb cellulase from substrate.However,ultrasound treatment also led to further surface erosion of biomass,which increased cellulase accessibility.These joint actions of ultrasound treatment induced the oscillating adsorption of cellulase.The increase in cellulase accessibility caused by ultrasound treatment led to a significant enhancement in lignocellulose hydrolysis. 展开更多
关键词 LIGNOCELLULOSE CELLULASE ULTRASOUND ADSORPTION DESORPTION hydrolysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部