期刊文献+
共找到508篇文章
< 1 2 26 >
每页显示 20 50 100
Enhancing the stability of Ni Fe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping
1
作者 Yongchao Yao Shengjun Sun +14 位作者 Hui Zhang Zixiao Li Chaoxin Yang Zhengwei Cai Xun He Kai Dong Yonglan Luo Yan Wang Yuchun Ren Qian Liu Dongdong Zheng Weihua Zhuang Bo Tang Xuping Sun Wenchuang(Walter)Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期306-312,共7页
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau... Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution. 展开更多
关键词 Ce doping NiFe layered double hydroxide Seawater oxidation ELECTROCATALYSIS Cl^(-)repulsion
下载PDF
Self-derivation and reconstruction of silver nanoparticle reinforced cobalt-nickel bimetallic hydroxides through interface engineering for overall water splitting
2
作者 Yan Li Jie Han +5 位作者 Weiwei Bao Junjun Zhang Taotao Ai Mameng Yang Chunming Yang Pengfei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期590-599,I0013,共11页
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e... Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition. 展开更多
关键词 Surface reconstruction Bimetallic hydroxides Ag nanoparticle Operando Raman Overall water splitting
下载PDF
Ultrafast Synthesis of Metal-Layered Hydroxides in a Dozen Seconds for High-Performance Aqueous Zn(Micro-)Battery 被引量:2
3
作者 Xiangyang Li Fangshuai Chen +9 位作者 Bo Zhao Shaohua Zhang Xiaoyu Zheng Ying Wang Xuting Jin Chunlong Dai Jiaqi Wang Jing Xie Zhipan Zhang Yang Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期16-31,共16页
Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly re... Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly rely on traditional bottom-up method,which involves tedious steps,time-consuming treatments,or additional alkaline media,and is unfavorable for high-efficiency production.Herein,we present a facile,ultrafast and general avenue to synthesize transition metal hydroxides on carbon substrate within 13 s by Joule-heating method.With high reaction kinetics caused by the instantaneous high temperature,seven kinds of transition metal-layered hydroxides(TM-LDHs)are formed on carbon cloth.Therein,the fastest synthesis rate reaches~0.46 cm^(2)s^(-1).Density functional theory calculations further demonstrate the nucleation energy barriers and potential mechanism for the formation of metal-based hydroxides on carbon substrates.This efficient approach avoids the use of extra agents,multiple steps,and long production time and endows the LDHs@carbon cloth with outstanding flexibility and machinability,showing practical advantages in both common and micro-zinc ion-based energy storage devices.To prove its utility,as a cathode in rechargeable aqueous alkaline Zn(micro-)battery,the NiCo LDH@carbon cloth exhibits a high energy density,superior to most transition metal LDH materials reported so far. 展开更多
关键词 Ultrafast synthesis Thermal shock Metal-layered hydroxides Zn(micro-)battery
下载PDF
Zn-doped nickel iron(oxy)hydroxide nanocubes passivated by polyanions with high catalytic activity and corrosion resistance for seawater oxidation 被引量:1
4
作者 So Jung Kim Heechae Choi +12 位作者 Jeong Ho Ryu Kang Min Kim Sungwook Mhin Arpan Kumar Nayak Junghwan Bang Minyeong Je Ghulam Ali Kyung Yoon Chung Kyeong-Han Na Won-Youl Choi Sunghwan Yeo Jin Uk Jang HyukSu Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期82-92,I0004,共12页
Electrochemical water splitting to produce hydrogen fuel is a promising renewable energy-conversion technique.Large-scale electrolysis of freshwater may deplete water resources and cause water scarcity worldwide.Thus,... Electrochemical water splitting to produce hydrogen fuel is a promising renewable energy-conversion technique.Large-scale electrolysis of freshwater may deplete water resources and cause water scarcity worldwide.Thus,seawater electrolysis is a potential solution to the future energy and water crisis.In seawater electrolysis,it is critical to develop cost-effective electrocatalysts to split seawater without chloride corrosion.Herein,we present zinc-doped nickel iron(oxy)hydroxide nanocubes passivated by negatively charged polyanions(NFZ-PBA-S)that exhibits outstanding catalytic activity,stability,and selectivity for seawater oxidation.Zn dopants and polyanion-rich passivated surface layers in NFZ-PBA-S could effectively repel chlorine ions and enhance corrosion resistance,enabling its excellent catalytic activity and stability for seawater oxidation. 展开更多
关键词 Seawater splitting Oxygen evolution reaction Electrocatalyst Layered double hydroxide SULFIDATION
下载PDF
Design, synthesis, and nanoengineered modification of spherical graphene surface by layered double hydroxide (LDH) for removal of As (Ⅲ) from aqueous solutions 被引量:1
5
作者 Najma Kamali Jahan B.Ghasemi +2 位作者 Ghodsi Mohammadi Ziarani Sahar Moradian Alireza Badiei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期374-380,共7页
In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a ... In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a well-known Hammer method. The obtained graphene oxide solution was sprayed in octanol solution under different temperatures and sprayed speed as influenced variables. The structure and physical characterization of synthesized spherical graphene oxide were determined by various techniques,including FT-IR, N_(2) adsorption–desorption, SEM, TEM, and EDX. In the next step, the hydrothermal method was applied to deposition LDH on the spherical graphene oxide. The synthesized spherical graphene modified by LDH was used to remove As(Ⅲ) as a toxic heavy metal ion. The effect of influenced variables including p H, contact time, amount of sorbent, and type eluent studied and the optimum values were as 8, 30, 50, and HCl(0.5 mol·L^(-1)), respectively. After optimization, the studied sorbent was shown a high adsorption capacity(149.3 mg·g^(-1)). The adsorption mechanism and kinetic models exhibited good agreement with the Langmuir isotherm and pseudo-second-order trends, respectively. Besides, the synthesized product was tested for seven times without significant loss in its sorption efficiency. 展开更多
关键词 Graphene-based spherical adsorbent Layered double hydroxide(LDH) Adsorption Spray-assisted deep-frying
下载PDF
Layered double hydroxides as electrode materials for flexible energy storage devices 被引量:1
6
作者 Qifeng Lin Lili Wang 《Journal of Semiconductors》 EI CAS CSCD 2023年第4期30-45,共16页
To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on ele... To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on electrode materials for high-capacity flexible supercapacitors and secondary batteries,which have greatly aided the development of contemporary digital communications and electric vehicles.The use of layered double hydroxides(LDHs)as electrode materials has shown productive results over the last decade,owing to their easy production,versatile composition,low cost,and excellent physicochemical features.This review highlights the distinctive 2D sheet-like structures and electrochemical characteristics of LDH materials,as well as current developments in their fabrication strategies for expanding the application scope of LDHs as electrode materials for flexible supercapacitors and alkali metal(Li,Na,K)ion batteries. 展开更多
关键词 layered double hydroxide flexible energy storage devices structural designs electrochemical performances
下载PDF
Advances in Mg-Al-layered double hydroxide steam coatings on Mg alloys:A review
7
作者 Shi-Qi Pan Fen Zhang +1 位作者 Cuie Wen Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1505-1518,共14页
Layered double hydroxide(LDH)coatings on magnesium(Mg)alloys shine brightly in the field of corrosion protection because of their special ion-exchange function.State-of-the-art steam coating as a type of LDH film prep... Layered double hydroxide(LDH)coatings on magnesium(Mg)alloys shine brightly in the field of corrosion protection because of their special ion-exchange function.State-of-the-art steam coating as a type of LDH film preparation technique has emerged in recent years because only pure water is required as the steam source and its environmentally friendly LDH coating fits the current need for green development.Moreover,this coating can effectively inhibit the corrosion of the Mg alloy substrate due to the chemical bonding between the coating and the Mg alloy substrate.This review systematically explains cutting-edge advancements in the growth mechanism and corrosion behavior of LDH steam coatings,and analyzes the advantages and limitations of the steam-coating method.The influencing factors including pressure,CO_(2)/CO_(3)^(2-),aluminum content of the substrate alloy,solution type,and acid-pickling pretreatment,as well as the post-treatment of steam-coating defects,are comprehensively elucidated,providing new insights into the development of the in situ steam-coating technique.Finally,existing issues and future prospects are discussed to further accelerate the widespread application of Mg alloys. 展开更多
关键词 Corrosion Layered double hydroxide(LDH) Mg alloy Steam coating Surface modification
下载PDF
Improvement of Cemented Gangue Backfill Material with Barium Hydroxide in Acid Mine Water
8
作者 Xiaoli Ye Yuxia Guo +3 位作者 Peng Wang Yonghui Zhao Wenshuo Xie Guorui Feng 《Journal of Renewable Materials》 SCIE EI 2023年第3期1451-1467,共17页
As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performa... As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performance of CGBM in acid mine water with sulfate ions,CGBM specimens with different doses of barium hydroxide were immersed in sulfuric acid solutions of different concentrations for 270 days.The changes of mass,ultrasonic pulse velocity(UPV)and compressive strength of the specimens at different ages were analyzed.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)were used to analyze the microstructure and composition of the specimens.The results show that incorporation of barium hydroxide into CGBM specimen can promote the formation of barium sulfate precipitation and inhibit the generation of corrosion products such as ettringite.Meanwhile,barium sulfate precipitation blocks the pore channel invaded by sulfuric acid solution,delaying the progress of corrosion reaction and making the interior of CGBM specimen more complete.And the specimen with 2.0 kg/m^(3)barium hydroxide was more effective in improving performance.This study provides a basis for the ratio design of CGBM in acid mine water with sulfate ions. 展开更多
关键词 Cemented gangue backfill material sulfate ions CORROSION barium hydroxide microscopic performance deterioration mechanism
下载PDF
Smart Interfacing between Co-Fe Layered Double Hydroxide and Graphitic Carbon Nitride for High-efficiency Electrocatalytic Nitrogen Reduction
9
作者 Xiaohui Wu Lu Tang +5 位作者 Yang Si Chunlan Ma Peng Zhang Jianyong Yu Yitao Liu Bin Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期62-69,共8页
Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction... Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction. 展开更多
关键词 density functional theory electrocatalytic nitrogen reduction graphitic carbon nitride interface engineering layered double hydroxide
下载PDF
Self-supported ultrathin NiCo layered double hydroxides nanosheets electrode for efficient electrosynthesis of formate
10
作者 Haoyuan Chi Jianlong Lin +6 位作者 Siyu Kuang Minglu Li Hai Liu Qun Fan Tianxiang Yan Sheng Zhang Xinbin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期267-275,I0008,共10页
Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,... Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,we fabricated self-supported ultrathin NiCo layered double hydroxides(LDHs)electrodes as anode for methanol electrooxidation to achieve a high formate production rate(5.89 mmol h^(-1)cm^(-2))coupled with CO_(2)electro-reduction at the cathode.A total formate faradic efficiency of both anode for methanol oxidation and cathode for CO_(2)reduction can reach up to 188%driven by a low cell potential of only 2.06 V at 100 mA cm^(-2)in membrane-electrode assembly(MEA).Physical characterizations demonstrated that Ni^(3+)species,formed on the electrochemical oxidation of Ni-containing hydroxide,acted as catalytically active species for the oxidation of methanol to formate.Furthermore,DFT calculations revealed that ultrathin LDHs were beneficial for the formation of Ni^(3+)in hydroxides and introducing oxygen vacancy in NiCo-LDH could decrease the energy barrier of the rate-determining step for methanol oxidation.This work presents a promising approach for fabricating advanced electrodes towards electrocatalytic reactions. 展开更多
关键词 CO_(2)reduction Methanol oxidation reaction FORMATE Layered double hydroxides Oxygen vacancies
下载PDF
Identification and comparison of the local physicochemical structures of transition metal-based layered double hydroxides for high performance electrochemical oxygen evolution reactions
11
作者 Min Sung Kim Bipin Lamichhane +5 位作者 Ju-Hyeon Lee Jin-Gyu Bae Jeong Yeon Heo Hyeon Jeong Lee Shyam Kattel Ji Hoon Lee 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期89-97,I0004,共10页
Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of ... Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of water electrolysis for sustainable hydrogen production.Despite their excellent OER performance,the structural and electronic properties of LDHs,particularly during the OER process,remain to be poorly understood.In this study,a series of LDH catalysts is investigated through in situ X-ray absorption fine structure analyses and density functional theory(DFT) calculations.Our experimental results reveal that the LDH catalyst with equal amounts of Ni and Fe(NF-LDH) exhibits the highest OER activity and catalytic life span when compared with its counterparts having equal amounts of Ni and Co(NC-LDH)and Ni only(Ni-LDH).The NF-LDH shows a markedly enhanced OER kinetics compared to the NC-LDH and the Ni-LDH,as proven by the lower overpotentials of 180,240,and 310 mV,respectively,and the Tafel slopes of 35.1,43.4,and 62.7 mV dec^(-1),respectively.The DFT calculations demonstrate that the lowest overpotential of the NF-LDH is associated with the active sites located at the edge planes of NF-LDH in contrast to those located at the basal planes of Ni-LDH and NC-LDH.The current study pinpoints the active sites on various LDHs and presents strategies for optimizing the OER performance of the LDH catalysts. 展开更多
关键词 Layered double hydroxides Oxygen evolution reaction In situ X-ray analyses Density functional theory Catalytic active sites
下载PDF
Environmentally Friendly Room Temperature Synthesis of 1-Tetralone over Layered Double Hydroxide-Hosted Sulphonato-Salen-Nickel(II) Complex
12
作者 Samiran Bhattacharjee Mohammad A. Matin +1 位作者 Hasina Akhter Simol Anowar Hosen 《Green and Sustainable Chemistry》 CAS 2023年第1期9-22,共14页
1-Tetralone, a useful synthetic intermediate in the manufacture of pharmaceuticals, agrochemicals and dyes, can be prepared by liquid phase catalytic oxidation of tetralin. Selective oxidation of tetralin to 1-tetralo... 1-Tetralone, a useful synthetic intermediate in the manufacture of pharmaceuticals, agrochemicals and dyes, can be prepared by liquid phase catalytic oxidation of tetralin. Selective oxidation of tetralin to 1-tetralone is still a big challenge with low-temperature processes using environmentally friendly routes even after decades of research. Herein, we demonstrate room-temperature oxidation of tetralin to 1-tetralone over layered double hydroxide-hosted sulphonato-salen-nickel(II) complex, LDH-[Ni-salen]. The layered double hydroxide-hosted sulphonato-salen-nickel(II) compound was characterized by powder X-ray diffraction, Fourier transform infrared spectrometer (FTIR), UV-Visible diffuse reflectance spectra, scanning electron microscopy (SEM) and elemental analysis. The theoretical calculations of free sulphonato-salen-nickel(II) complex using Density Functional Theory/CAM-B3LYP at the 6-311++ G(d,p) level of theory were also used to determine the orientation of the Ni-salen compound within the layered structure. The immobilized compound, LDH-[Ni-salen] was found to be an effective reusable catalyst for the oxidation of tetralin to 1-tetralone using a combination of trimethylacetaldehyde and molecular oxygen (14.5 psi) and at 25&deg;C. At 45.5% conversion, tetralin was converted to 1-tetralone with 77.2% selectivity at room temperature and atmospheric pressure after 24 h. The catalyst recycles test and hot filtration experiment showed that oxidation proceeded through Ni(II) sites in LDH-[Ni-salen]. The catalysts were reused several times without losing their catalytic activity and selectivity. The present results may provide a convenient strategy for the preparation of 1-tetralone using layered double hydroxide-based heterogeneous catalyst at ambient temperature for industrial application in near future. 展开更多
关键词 Sulphonato-Salen-Nickel(II) Layered Double hydroxide Tetralin Oxidation Room Temperature 1-Tetralone
下载PDF
Synthesis, Characterization, and Effects of Morphology on the Magnetic Application Base Properties of Pure Nickel Oxide (NiO) and Cobalt-Doped Nickel Oxide/Nickel Hydroxide (CoxNi1-xO/Ni(OH)2) Nanocomposites
13
作者 Ekane Peter Etape Oga Eugene Agbor +3 位作者 Beckley Victorine Namondo Zoubir Benmaamar Josepha Foba-Tendo John Ngolui Lambi 《Advances in Microbiology》 2023年第3期106-122,共17页
Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis,... Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis, sensing, electric, thermal, magnetic, and photovoltaic applications. The general properties and particle morphology of nickel oxide/Nickel hydroxide NPs can be modified by the introduction of impurity atoms or ions. Nano sized nickel oxide/nickel hydroxide nanocomposites were obtained from the thermal decomposition of single molecular precursors synthesized by a modified oxalate route using Carambola fruit juice as a precipitating agent. The compositional and morphological variations were studied by introducing cobalt as an impurity ion at different w/w% fractions (0%, 0.1%, 0.3%, 0.5%, 1%, 3%, 5.0%, 40.0% and 50.0%) into the microstructure of the nickel oxide/hydroxide. The precursors were characterized by FT-IR, while TGA/DTG analysis was carried out to decompose the precursors. The precursors decomposed at 400°C and were characterized by PXRD and SEM/TEM. The results revealed that Pure Nickel Oxide (NiO) and, Cobalt-doped Nickel Oxide/nickel hydroxide (Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) Nano composites have been synthesized and the synthesized samples have exhibited three distinct morphologies (porous face-centered cubic nano rods, rough and discontinuous Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) composite and, smooth and continuous mix spherical/cuboidal mixed morphological phase of (NiO/CoO). The morphology of the NPs varied with the introduction of the dopant atoms and with increase in the concentration of dopant atoms in the composite. Magnetic studies using vibrating sample magnetometry revealed superparamagnetic properties which correlated strongly with particle size, shape and morphology. Observed values of retention (4.50 × 10<sup>-3</sup> emu/g) and coercivity (65.321 Oe) were found for 0.5 w/w% corresponding to impregnated porous nanorods of Co-doped NiO, and retention (9.03 × 10<sup>-3</sup> emu/g) and coercivity (64.341 Oe), for X = 50.0%, corresponding to an aggregate network of a Nano spherical/cubic CoO/NiO mixed phase. Magnetic properties within this range are known to improve the magnetic memory and hardness of the magnetic materials. Therefore, the synthesized Cobalt-doped Nickel Oxide/nickel hydroxide (Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) Nano composites have potential applications in Magnetic memories and hardness of magnetic materials. 展开更多
关键词 Nickel Oxide/hydroxide Doping MORPHOLOGY Magnetic Properties Carambola Fruit Juice
下载PDF
Synthesis, Characterization, and Effects of Morphology on the Magnetic Application Base Properties of Pure Nickel Oxide (NiO) and Cobalt-Doped Nickel Oxide/Nickel Hydroxide (CoxNi1-xO/Ni(OH)2) Nanocomposites
14
作者 Ekane Peter Etape Oga Eugene Agbor +3 位作者 Beckley Victorine Namondo Zoubir Benmaamar Josepha Foba-Tendo John Ngolui Lambi 《Advances in Nanoparticles》 2023年第3期106-122,共17页
Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis,... Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis, sensing, electric, thermal, magnetic, and photovoltaic applications. The general properties and particle morphology of nickel oxide/Nickel hydroxide NPs can be modified by the introduction of impurity atoms or ions. Nano sized nickel oxide/nickel hydroxide nanocomposites were obtained from the thermal decomposition of single molecular precursors synthesized by a modified oxalate route using Carambola fruit juice as a precipitating agent. The compositional and morphological variations were studied by introducing cobalt as an impurity ion at different w/w% fractions (0%, 0.1%, 0.3%, 0.5%, 1%, 3%, 5.0%, 40.0% and 50.0%) into the microstructure of the nickel oxide/hydroxide. The precursors were characterized by FT-IR, while TGA/DTG analysis was carried out to decompose the precursors. The precursors decomposed at 400°C and were characterized by PXRD and SEM/TEM. The results revealed that Pure Nickel Oxide (NiO) and, Cobalt-doped Nickel Oxide/nickel hydroxide (Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) Nano composites have been synthesized and the synthesized samples have exhibited three distinct morphologies (porous face-centered cubic nano rods, rough and discontinuous Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) composite and, smooth and continuous mix spherical/cuboidal mixed morphological phase of (NiO/CoO). The morphology of the NPs varied with the introduction of the dopant atoms and with increase in the concentration of dopant atoms in the composite. Magnetic studies using vibrating sample magnetometry revealed superparamagnetic properties which correlated strongly with particle size, shape and morphology. Observed values of retention (4.50 × 10<sup>-3</sup> emu/g) and coercivity (65.321 Oe) were found for 0.5 w/w% corresponding to impregnated porous nanorods of Co-doped NiO, and retention (9.03 × 10<sup>-3</sup> emu/g) and coercivity (64.341 Oe), for X = 50.0%, corresponding to an aggregate network of a Nano spherical/cubic CoO/NiO mixed phase. Magnetic properties within this range are known to improve the magnetic memory and hardness of the magnetic materials. Therefore, the synthesized Cobalt-doped Nickel Oxide/nickel hydroxide (Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) Nano composites have potential applications in Magnetic memories and hardness of magnetic materials. 展开更多
关键词 Nickel Oxide/hydroxide Doping MORPHOLOGY Magnetic Properties Carambola Fruit Juice
下载PDF
Synthesis of cation exchange resin-supported iron and magnesium oxides/hydroxides composite for nitrate removal in water 被引量:2
15
作者 Trung Thanh Nguyen Vu Anh Khoa Tran +6 位作者 Le Ba Tran Phuoc Toan Phan Minh Tan Nguyen Long Giang Bach Surapol Padungthon Cong Khiem Ta Nhat Huy Nguyen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期378-384,共7页
In this study,we reported on the concept and practical use of cation exchange resin(CER)for removing anions in water via pretreating the CER with metal salts.The cation exchange resinsupported iron and magnesium oxide... In this study,we reported on the concept and practical use of cation exchange resin(CER)for removing anions in water via pretreating the CER with metal salts.The cation exchange resinsupported iron and magnesium oxides/hydroxides composite(FeMg/CER)was synthesized and introduced as a new and potential adsorbent for selective removal of nitrate ion in the water environment.Characteristics of FeMg/CER were determined by techniques such as Fouriertransform infrared spectroscopy,scanning electron microscopy,and Xray diffraction.The results showed that FeMg/CER material had a high nitrate adsorption capacity of 200 mg NO_(3)^()·g^(1)with a fast equilibrium adsorption time of 30 min at pH 5.In addition,it had good durability of at least 10 times of regeneration,which could be applied to practical water and wastewater treatment. 展开更多
关键词 Iron oxide/hydroxide Magnesium oxide/hydroxide Cation exchange resin ADSORPTION Environment NANOMATERIALS
下载PDF
Using bipolar membrane electrodialysis to synthesize di-quaternary ammonium hydroxide and optimization design by response surface methodology 被引量:2
16
作者 Jiangnan Shen Zhendong Hou Congjie Gao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1176-1181,共6页
Bipolar membrane electrodialysis(BMED) has already been described for the preparation of quaternary ammonium hydroxide. However, compared to quaternary ammonium hydroxide, di-quaternary ammonium hydroxide has raised g... Bipolar membrane electrodialysis(BMED) has already been described for the preparation of quaternary ammonium hydroxide. However, compared to quaternary ammonium hydroxide, di-quaternary ammonium hydroxide has raised great interest due to its high thermal stability and good oriented performance.In order to synthesize N,N-hexamethylenebis(trimethyl ammonium hydroxide)(HM(OH)_2) by EDBM,experiments designed by response surface methodology were carried out on the basis of single-factor experiments. The factors include current density, feed concentration and flow ratio of each compartment(feed compartment: base compartment: acid compartment: buffer compartment). The relationship between current efficiency and the above-mentioned three factors was quantitatively described by a multivariate regression model. According to the results, the feed concentration was the most significant factor and the optimum conditions were as follows: the current efficiency was up to 76.2%(the hydroxide conversion was over 98.6%), with a current density of 13.15 m A·cm^(-2), a feed concentration of 0.27 mol·L^(-1) and a flow ratio of 20 L·h^(-1):26 L·h^(-1):20 L·h^(-1):20 L·h^(-1) for feed compartment, base compartment, acid compartment, and intermediate compartment, respectively. This study demonstrates the optimized parameters of manufacturing HM(OH)_2 by direct splitting its halide for industrial application. 展开更多
关键词 Di-quaternary ammonium hydroxide Bipolar membrane electrodialysis Response surface methodology N N-hexamethylenebis(trimethyl ammonium hydroxide)
下载PDF
Calcium Hydroxide in Endodontics: An Overview 被引量:1
17
作者 Raidan Ba-Hattab Manar Al-Jamie +2 位作者 Haya Aldreib Lujain Alessa Mohammad Alonazi 《Open Journal of Stomatology》 2016年第12期274-289,共17页
Background: Calcium hydroxide has been used in dentistry since several decades. It has been used in a number of applications in the field of endodontics such as root resorption, intracanal medicament, and root canal s... Background: Calcium hydroxide has been used in dentistry since several decades. It has been used in a number of applications in the field of endodontics such as root resorption, intracanal medicament, and root canal sealers. Although this material exhibits several advantages, it also has some limitations. Objectives: To review the role of calcium hydroxide in the field of endodontics, focusing on its mechanism of action, antimicrobial effects, different applications, cytotoxicity or biocompatibility, and its removal from the root canals. Materials and Methods: An electronic search was done using different databases. Out of 2,664 articles, only 33 articles have been selected to be included in this review because they are directly related to the topic and matched the inclusion criteria of this review: “Language: English” and “Year: 2000-2016”. Results: The antimicrobial effect of calcium hydroxide is controversial. Although some studies supported the effectiveness of calcium hydroxide against some bacteria others reported its limitation against fungal infection. Calcium hydroxide can be used effectively as intracanal medicament, root canal sealer, in weeping canals, for perforation management and root resorption. Conclusions: Despite the limitation of antimicrobial activity of calcium hydroxide, it is used effectively in a number of treatment modalities in endodontics. Due to its biological and therapeutical properties, calcium hydroxide is the material of choice for all pulp therapy. However, when using calcium hydroxide as a dressing material in root canal treatment caution should be taken to prevent the overextension of the paste beyond the tooth apex and avoid the harmful side effects. 展开更多
关键词 Calcium hydroxide ENDODONTICS Root Canal Treatment Applications in Endodontics Mechanism of Action CYTOTOXICITY BIOCOMPATIBILITY Removal of Calcium hydroxide from the Canals
下载PDF
An in vitro study on the efficacy of removing calcium hydroxide from curved root canal systems in root canal therapy 被引量:8
18
作者 Ying Wang Li-Yang Guo +5 位作者 Hong-Zhi Fang Wen-Ling Zou Ying-Ming Yang Yuan Gao Hui Yang Tao Hu 《International Journal of Oral Science》 SCIE CAS CSCD 2017年第2期110-116,共7页
To compare the efficacy of various irrigants(citric acid, ethylenediaminetetraacetic acid(EDTA) and Na OCl) and techniques in removing Ca(OH)_2 in two types of curved root canal systems, simulated root canals with spe... To compare the efficacy of various irrigants(citric acid, ethylenediaminetetraacetic acid(EDTA) and Na OCl) and techniques in removing Ca(OH)_2 in two types of curved root canal systems, simulated root canals with specific curvatures were used to investigate the effects of different irrigants and instruments on Ca(OH)_2 removal. The optimal methods were verified on extracted human teeth. Simulated root canals were assigned to one of two groups based on the irrigation solution: 10% citric acid or2.5% Na OCl. Each group was divided into four subgroups according to the technique used to remove Ca(OH)_2 . The percentage of Ca(OH)_2 removal in different sections of root canals was calculated. On the basis of the results obtained for the simulated canals, 10% citric acid and 17% EDTA were applied to remove Ca(OH)_2 from the extracted human teeth with curved root canal systems. The teeth were scanned by micro computed tomography to calculate the percentage of Ca(OH)_2 removal in the canals.In simulated root canals, we found that 10% citric acid removed more Ca(OH)_2 than 2.5% NaOCl in the 0–1 mm group from the apex level(Po0.05). Ultrasonic and Endo Activator activation significantly removed more Ca(OH)_2 than a size 30 K file in the apical third(Po0.05). However, there were no significant differences in any sections of the canals for 10% citric acid or 17%EDTA in removing Ca(OH)_2 in extracted human teeth. We concluded that it was effective to remove residual Ca(OH)_2 using the decalcifying solution with Endo Activator or Passive Ultrasonic Irrigation in a curved root canal system. A protocol for Ca(OH)_2 removal was provided based on the conclusions of this study and the methods recommended in previous studies. 展开更多
关键词 CALCIUM hydroxide curved ROOT CANAL system IRRIGATION removal
下载PDF
Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives 被引量:9
19
作者 Lei Zhou Mingfei Shao +1 位作者 Min Wei Xue Duan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1094-1106,共13页
The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water sp... The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water splitting cells. Layered double hydroxides(LDHs) and their derivatives(e.g., transition metal alloys, oxides, sulfides, nitrides and phosphides) have been adopted as catalysts for various electrochemical reactions, such as oxygen reduction, oxygen evolution, hydrogen evolution, and CO_2 reduction, which show excellent activity and remarkable durability in electrocatalytic process. In this review, the synthesis strategies, structural characters and electrochemical performances for the LDHs and their derivatives are described. In addition, we also discussed the effect of electronic and geometry structures to their electrocatalytic activity. The further development of high-performance electrocatalysts based on LDHs and their derivatives is covered by both a short summary and future outlook from the viewpoint of the material design and practical application. 展开更多
关键词 Layered double hydroxide DERIVATIVES ELECTROCATALYSIS Oxygen reduction Water splitting CO2 reduction Electronic structure Hierarchical structure Metal–air battery Fuel cell
下载PDF
Preparation of Hierarchically Trimodal-Porous ZSM-5 Composites through Steam-assisted Conversion of Macroporous Aluminosilica Gel with Two Different Quaternary Ammonium Hydroxides 被引量:8
20
作者 Zhao Tianbo Wang Jia +1 位作者 Xu Xin Wang Guijie 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第1期48-58,共11页
This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure... This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure and polymer properties. The spherical support with the chemical composition of CH3CH2 OMg OCH(CH2Cl)2 has been synthesized from a new dispersion system and is used as the supporting material to prepare Ziegler-Natta catalyst. The XRD analysis indicates that the catalyst is fully activated with δ-Mg Cl2 in the active catalyst. The far-IR spectrometric results confirm again the presence of δ-Mg Cl2 in the active catalyst. Textural property of the active catalyst exhibits high surface area coupled with high porosity. The high activity in propylene polymerization is mainly ascribed to the full activation and the porous structure of the catalyst. Scanning electron microscopy/energy dispersive spectrometer mapping results indicate a uniform titanium distribution throughout the catalyst particles. Particle size analysis shows that the catalyst has a narrow particle size distribution. The perfect spherical shape, uniform titanium distribution and narrow particle size distribution of the catalyst confirm the advantage of polymer particles production with less fines. The solid state 13 C NMR and mid-IR spectroscopic analyses indicate that there exists strong complexation between diisobutyl phthalate and Mg Cl2, which leads to the high isotacticity of polypropylene. 展开更多
关键词 ZSM-5 composites hierarchically trimodal-porous steam-assisted CONVERSION method MACROPOROUS aluminosilicagel quaternary ammonium hydroxide
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部