期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Light-HGNN:用于圈层内容推荐的轻量同质超图神经网络 被引量:2
1
作者 李挺 金福生 +3 位作者 李荣华 王国仁 段焕中 路彦雄 《计算机研究与发展》 EI CSCD 北大核心 2024年第4期877-888,共12页
图神经网络和超图神经网络(hypergraph neural network,HGNN)已经成为协同过滤推荐领域的研究热点.然而实际场景中用户和项目的交互非常复杂,导致用户之间存在高阶的复杂关系,而普通图结构只能表达简单的成对关系,对网络结构的堆叠容易... 图神经网络和超图神经网络(hypergraph neural network,HGNN)已经成为协同过滤推荐领域的研究热点.然而实际场景中用户和项目的交互非常复杂,导致用户之间存在高阶的复杂关系,而普通图结构只能表达简单的成对关系,对网络结构的堆叠容易导致中间层表征的过度平滑,在稀疏场景下的用户建模、用户相似性发现与挖掘方面能力较弱;同时,异质超图神经网络的复杂结构使得模型的训练效率较低.在以微信“搜一搜”等内容平台为代表的高度稀疏数据场景中,对于基于用户所属群体画像的圈层内容推荐任务,现有模型推荐效果差、用户表示的可解释性弱.因此,针对该类任务,提出了一个新的轻量同质超图神经网络模型,该模型包含用户交互数据至超图的转化、卷积生成用户表征序列、用户表征计算过滤.模型首先将用户-项目交互数据转化为只含用户节点的同质超图并计算得到用户表征解耦序列初始值,随后根据超图拉普拉斯过滤矩阵进行信息传播与序列值的迭代生成,通过不使用激活层的卷积方法简化模型结构,并根据提出的均值差JK注意力机制为每个序列值生成权重矩阵.最终,通过对解耦序列加权求和、过滤实现对用户表示的编码,并在真实数据集上进行实验验证了所提模型的相对更优效果. 展开更多
关键词 同质超图 超图神经网络 个性化推荐 圈层内容推荐 推荐算法
下载PDF
基于多层超图卷积神经网络的故障诊断方法
2
作者 张元东 张先杰 +1 位作者 张若楠 张海峰 《复杂系统与复杂性科学》 北大核心 2025年第1期131-137,共7页
机器学习方法在复杂工业过程中的故障诊断方面获得了很大的发展。然而,现有的大多数方法只考虑独立样本的特征,或者样本之间的二元关系,很少考虑样本之间的高阶关系以及结构多样性。因此提出一种基于多层超图卷积神经网络的故障诊断方法... 机器学习方法在复杂工业过程中的故障诊断方面获得了很大的发展。然而,现有的大多数方法只考虑独立样本的特征,或者样本之间的二元关系,很少考虑样本之间的高阶关系以及结构多样性。因此提出一种基于多层超图卷积神经网络的故障诊断方法,该方法首先利用多种相似性指标构建出具有不同结构的多层超图,然后通过层内超图卷积以及层间图卷积的操作进行特征的提取与融合。在SEU的仿真数据集以及磨煤机组的真实数据集中进行实验,结果表明该方法可以有效地提高故障诊断的精度。 展开更多
关键词 超图神经网络(hgnn) 图卷积网络(GCN) 多层超图 故障诊断
下载PDF
结合多尺度注意力和动态构建的非均匀超图聚类模型
3
作者 朱峰冉 王慧颖 +2 位作者 林晓丽 李全鑫 庞俊 《计算机工程与应用》 北大核心 2025年第2期200-207,共8页
单个较大非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得同一簇内的节点更相似,而不同簇中的节点更不相似,具有广泛的应用场景。目前,最优的基于超图神经网络的非均匀超图聚类方法CIAH(co-cluster the interactions via at... 单个较大非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得同一簇内的节点更相似,而不同簇中的节点更不相似,具有广泛的应用场景。目前,最优的基于超图神经网络的非均匀超图聚类方法CIAH(co-cluster the interactions via attentive hypergraph neural network)虽然较好地学习了非均匀超图的关系信息,但仍存在两点不足:(1)对于局部关系信息的挖掘不足;(2)忽略了隐藏的高阶关系。因此,提出一种基于多尺度注意力和动态超图构建的非均匀超图聚类模型MADC(non-uniform hypergraph clustering combining multi-scale attention and dynamic construction)。一方面,使用多尺度注意力充分学习了超边中节点与节点之间的局部关系信息;另一方面,采用动态构建挖掘隐藏的高阶关系,进一步丰富了超图特征嵌入。真实数据集上的大量实验结果验证了MADC模型在非均匀超图聚类上的聚类准确率(accuracy,ACC)、标准互信息(normalized mutual information,NMI)和调整兰德指数(adjusted Rand index,ARI)均优于CIAH等所有Baseline方法。 展开更多
关键词 非均匀超图 超图聚类 超图神经网络 多尺度注意力
下载PDF
基于有向超图自适应卷积的链接预测模型
4
作者 赵文博 马紫彤 杨哲 《计算机应用》 北大核心 2025年第1期15-23,共9页
图神经网络(GNN)为链接预测提供了多样化的解决方案,但由于普通图的结构限制,目前的相关模型在充分利用顶点间的高阶及不对称信息方面存在明显的不足。针对以上问题,提出一种基于有向超图自适应卷积的链接预测模型。首先,使用有向超图... 图神经网络(GNN)为链接预测提供了多样化的解决方案,但由于普通图的结构限制,目前的相关模型在充分利用顶点间的高阶及不对称信息方面存在明显的不足。针对以上问题,提出一种基于有向超图自适应卷积的链接预测模型。首先,使用有向超图结构更充分地表示顶点间的高阶和方向信息,兼具超图和有向图的优势;其次,有向超图自适应卷积采用自适应信息传播方式替代传统有向超图中的定向信息传播方式,从而解决了有向超边尾部顶点不能有效更新嵌入的问题,同时解决多层卷积导致的顶点过度平滑问题。在Citeseer数据集上基于显式顶点特征的实验结果显示,在链接预测任务上,相较于有向超图神经网络(DHNN)模型,所提模型的ROC(Receiver Operating Characteristic)曲线下面积(AUC)指标提升了2.23个百分点,平均精度(AP)提升了1.31个百分点。因此,所提模型可以充分表达顶点间的关系,并有效提高链接预测任务的性能。 展开更多
关键词 图神经网络 有向超图 链接预测 超图卷积 表示学习 自适应卷积
下载PDF
基于双通道异质超图神经网络的引文推荐方法
5
作者 李瑞红 李晓红 +1 位作者 姚锦 王闪闪 《计算机工程与科学》 北大核心 2025年第2期361-369,共9页
针对现有引文推荐方法侧重于使用图结构建模二元关系,对节点类型和交互关系的多元化及多样性表示不足的问题,提出了基于双通道异质超图神经网络的引文推荐方法。首先,构建异质图,利用卷积神经网络和Transformer分别编码异质图中各个节... 针对现有引文推荐方法侧重于使用图结构建模二元关系,对节点类型和交互关系的多元化及多样性表示不足的问题,提出了基于双通道异质超图神经网络的引文推荐方法。首先,构建异质图,利用卷积神经网络和Transformer分别编码异质图中各个节点的局部和全局语义特征,获得异质图通道上关于目标节点的结构表征。其次,设计多种类型的超边,扩展异构数据信息。再次,使用超图编码节点间的交互,并利用超图神经网络捕获超图中潜在的复杂高阶语义关系,获得超图通道上关于目标节点的语义表征。最后,聚合2个通道上的信息,得到目标节点的最终语义表示,并计算目标论文节点与候选论文节点间的相关性,生成引用文献推荐列表。在DBLP和PubMed数据集上的实验结果表明,所提出的方法能有效提升引文推荐的质量,获得较好的推荐结果。 展开更多
关键词 引文推荐 异质图 超图神经网络 信息融合
下载PDF
基于SCADA数据的中缅原油管道泵机组运行状态评估
6
作者 闫龙 孙强 +3 位作者 代光洪 张晓辉 李铁军 崔新鹏 《油气田地面工程》 2025年第2期42-48,共7页
泵机组作为原油长输管道中最复杂、最核心的大型动力设备,其运行状态和负荷分配对整个管道的动力配置和运行优化起着重要作用。为了实时掌握中缅原油管道泵机组的运行状态,采用超图学习方法,挖掘了中缅原油管道输油站场的数据采集监视... 泵机组作为原油长输管道中最复杂、最核心的大型动力设备,其运行状态和负荷分配对整个管道的动力配置和运行优化起着重要作用。为了实时掌握中缅原油管道泵机组的运行状态,采用超图学习方法,挖掘了中缅原油管道输油站场的数据采集监视服务器(SCADA)数据与输油站场泵机组状态的高阶关系,建立SCADA数据与泵机组运行状态的关系模型,实现了对泵机组异常停机和正常停机状态的自动判断。研究结果表明:超图学习方法能够准确判断中缅原油管道泵机组运行状态,其判断准确率达96.6%,该方法为中缅原油管道的系统软件智能分析全线泵机组可靠性提供了判断基础。 展开更多
关键词 中缅原油管道 SCADA数据 超图学习 状态评估 BP神经网络 支持向量机
下载PDF
Make U-Net Greater: An Easy-to-Embed Approach to Improve Segmentation Performance Using Hypergraph
7
作者 Jing Peng Jingfu Yang +5 位作者 Chaoyang Xia Xiaojie Li Yanfen Guo Ying Fu Xinlai Chen Zhe Cui 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期319-333,共15页
semantics information while maintaining spatial detail con-texts.Long-range context information plays a crucial role in this scenario.How-ever,the traditional convolution kernel only provides the local and small size ... semantics information while maintaining spatial detail con-texts.Long-range context information plays a crucial role in this scenario.How-ever,the traditional convolution kernel only provides the local and small size of the receptivefield.To address the problem,we propose a plug-and-play module aggregating both local and global information(aka LGIA module)to capture the high-order relationship between nodes that are far apart.We incorporate both local and global correlations into hypergraph which is able to capture high-order rela-tionships between nodes via the concept of a hyperedge connecting a subset of nodes.The local correlation considers neighborhood nodes that are spatially adja-cent and similar in the same CNN feature maps of magnetic resonance(MR)image;and the global correlation is searched from a batch of CNN feature maps of MR images in feature space.The influence of these two correlations on seman-tic segmentation is complementary.We validated our LGIA module on various CNN segmentation models with the cardiac MR images dataset.Experimental results demonstrate that our approach outperformed several baseline models. 展开更多
关键词 Convolutional neural network semantic segmentation hypergraph neural network LGIA module
下载PDF
注意力感知的边−节点交换图神经网络模型 被引量:2
8
作者 王瑞琴 黄熠旻 +2 位作者 纪其顺 万超艺 周志峰 《电信科学》 北大核心 2024年第1期106-114,共9页
提出了一种注意力感知的边-节点交换图神经网络(attention aware edge-node exchange graph neural network,AENN)模型,在图结构化数据表示框架下,使用边-节点切换卷积的图神经网络算法进行图编码,用于半监督分类和回归分析。AENN是一... 提出了一种注意力感知的边-节点交换图神经网络(attention aware edge-node exchange graph neural network,AENN)模型,在图结构化数据表示框架下,使用边-节点切换卷积的图神经网络算法进行图编码,用于半监督分类和回归分析。AENN是一种通用的图编码框架,用于将图节点和边嵌入一个统一的潜在特征空间。具体地,基于原始无向图,不断切换边与节点的卷积,并在卷积过程中通过注意力机制分配不同邻居的权重,从而实现特征传播。在3个数据集上的实验研究表明,所提方法较已有方法在半监督分类和回归分析中具有明显的性能提升。 展开更多
关键词 图神经网络 消息传递 注意力机制 超图 边图
下载PDF
NHCL:一种基于原生结构增强的超图对比学习
9
作者 刘宇 侯阿龙 +2 位作者 方舒言 高峰 张晓龙 《计算机技术与发展》 2024年第9期116-123,共8页
基于自监督学习的超图对比学习已被广泛研究,然而,当前超图对比学习大多采用传统图表示学习中的数据增强方法,较少考虑超图的原生结构,并没有充分利用超图中的高阶关系。为了解决这一局限性,提出了一系列基于超图原生结构的数据增强操作... 基于自监督学习的超图对比学习已被广泛研究,然而,当前超图对比学习大多采用传统图表示学习中的数据增强方法,较少考虑超图的原生结构,并没有充分利用超图中的高阶关系。为了解决这一局限性,提出了一系列基于超图原生结构的数据增强操作,即针对超图中的超边和节点进行扰动。通过对超边之间的包含、组合及相交等关系和节点之间交互关系的研究,提出了一系列面向超边和节点的基本扰动操作,并在此基础上对面向超边和节点之间的基本操作进行了组合,帮助模型进行学习。通过使用基本数据增强操作及其组合,生成用于超图对比学习模型进行学习的正负样本对,使用超图神经网络学习其表征信息并进行编码,通过损失函数指导模型训练,从而帮助模型学习到超图中的高阶关系。为了验证该方法的有效性,对Cora-CA、PubMed和ModelNet40等12个常用的超图基准数据集进行了节点分类实验。实验结果表明,相比于现有两个超图自监督方法Self和Con、超图对比学习方法HyperGCL和TriCL,该方法在节点分类准确率上提升了2%~7%。 展开更多
关键词 超图对比学习 数据增强 超图原生结构 超图神经网络 自监督学习
下载PDF
基于谱域超图卷积网络的交通流预测模型 被引量:5
10
作者 尹宝才 王竟成 +2 位作者 张勇 胡永利 孙艳丰 《北京工业大学学报》 CAS CSCD 北大核心 2024年第2期152-164,共13页
针对传统图结构难以对节点间的隐含复杂关联关系建模的问题,利用超图对交通流数据进行高阶表示,提出基于谱域超图卷积网络的交通流预测方法。首先,通过动态超边刻画数据特征层面的关系,利用谱域超图卷积,包括基于傅里叶和图小波的超图... 针对传统图结构难以对节点间的隐含复杂关联关系建模的问题,利用超图对交通流数据进行高阶表示,提出基于谱域超图卷积网络的交通流预测方法。首先,通过动态超边刻画数据特征层面的关系,利用谱域超图卷积,包括基于傅里叶和图小波的超图卷积及门控时序卷积,在多尺度上提取交通流的时空特征,实现端到端的节点级交通流预测。然后,采用北京市以及美国加利福尼亚州真实历史数据集进行预测实验。消融实验通过孤立和重构网络模型验证了所提方法的有效性。全时段和早高峰交通流预测的实验结果表明,该方法预测准确率高于目前主流交通流预测模型。 展开更多
关键词 图神经网络 超图理论 多元时序预测 深度学习 大数据分析 智慧交通
下载PDF
超图神经网络综述 被引量:3
11
作者 林晶晶 冶忠林 +1 位作者 赵海兴 李卓然 《计算机研究与发展》 EI CSCD 北大核心 2024年第2期362-384,共23页
近年来,图神经网络借助大量数据和超强计算能力在推荐系统和自然语言处理等应用领域取得显著成效,它主要处理具有成对关系的图数据.但许多现实网络中的对象之间的关系是复杂的非成对关系,如科研合作网络、蛋白质网络等.若直接用图结构... 近年来,图神经网络借助大量数据和超强计算能力在推荐系统和自然语言处理等应用领域取得显著成效,它主要处理具有成对关系的图数据.但许多现实网络中的对象之间的关系是复杂的非成对关系,如科研合作网络、蛋白质网络等.若直接用图结构将这种复杂的关系表示为成对关系,会导致信息丢失.超图是一种灵活的建模工具,可以展现出图无法完整刻画的高阶关系,弥补了图的不足.鉴于此,研究者开始关心如何在超图上设计神经网络,并相继提出应用于下游任务的超图神经网络模型(hypergraph neural network,HGNNs).故对现有的超图神经网络模型进行综述,首先全面回顾超图神经网络在过去3年的研究历程;其次根据设计超图神经网络采用的方法不同对其进行分类,并详细地阐述代表性的模型;然后介绍了超图神经网络的应用领域;最后总结和探讨了超图神经网络未来的研究方向. 展开更多
关键词 超图 超图神经网络 分类 图神经网络
下载PDF
面向知识场景的图片类教育资源知识点自动标注算法 被引量:1
12
作者 王静 杜旭 +1 位作者 李浩 胡壮 《计算机工程与应用》 CSCD 北大核心 2024年第24期119-130,共12页
针对图片资源的视觉特征与高级知识语义不一致的挑战,提出一种新的知识点自动标注算法,称为基于知识场景的情境超图卷积网络(SHGCN),以便高效组织管理教育领域中的图片数据,促进知识理解与有效利用,实现教育智能化。该算法在提取图片资... 针对图片资源的视觉特征与高级知识语义不一致的挑战,提出一种新的知识点自动标注算法,称为基于知识场景的情境超图卷积网络(SHGCN),以便高效组织管理教育领域中的图片数据,促进知识理解与有效利用,实现教育智能化。该算法在提取图片资源显性视觉特征的同时,又挖掘了隐含在细粒度区域的隐性知识信息。利用Faster R-CNN和OCR技术来识别知识对象和坐标文本等知识实体,这些知识实体特征融合后作为该图片的知识向量;提出双筛选机制来生成不同类型的知识场景,并将知识场景作为超边来构建情境超图,建模蕴含相似情境信息的图片间高阶知识相关性。利用超图卷积实现知识相似图片的情境信息聚合,实现“视觉-语义”到“视觉-语义-知识”的转化。还构建了一个物理学科的图片数据集来训练和验证SHGCN。实验结果表明,SHGCN在提取图片显性视觉信息的基础上,进一步挖掘隐性知识信息,其性能优于基线方法。 展开更多
关键词 知识点标注 超图卷积网络 知识场景 情境超图
下载PDF
基于异构图中多层次图结构的级联图卷积网络 被引量:1
13
作者 宋凌云 刘至臻 +2 位作者 张炀 李战怀 尚学群 《软件学报》 EI CSCD 北大核心 2024年第11期5179-5195,共17页
异构图是一种具有多种类型节点或边的图,也称异构信息网络,其常被用来建模现实世界中具有丰富特征和关联模式的系统.异构节点间的链接预测是网络分析领域的一个基本任务.近年来,异构图神经网络技术的发展极大地促进了链接预测任务的进步... 异构图是一种具有多种类型节点或边的图,也称异构信息网络,其常被用来建模现实世界中具有丰富特征和关联模式的系统.异构节点间的链接预测是网络分析领域的一个基本任务.近年来,异构图神经网络技术的发展极大地促进了链接预测任务的进步,其通常将此任务当作节点间的特征相似性分析或基于成对节点特征的二分类问题.然而,现有的异构图神经网络技术在进行节点特征表示学习时,往往仅关注相邻节点间的关联或基于元路径的结构信息.这使得其不仅难以捕捉异构图中固有的环结构所蕴含的语义信息,也忽视了不同层次的结构信息之间的互补性.为解决上述问题,设计一种基于多层次图结构的级联图卷积网络CGCN-MGS,其由基于邻居、元路径和环3种不同层次图结构的图神经网络组成,能从多层次特征中挖掘出丰富、互补的信息,提高所学节点特征对节点语义和结构信息的表征能力.多个基准数据集上的实验结果表明,CGCN-MGS在异构图的链接预测任务上能够取得目前最优的性能结果. 展开更多
关键词 异构图神经网络 链接预测 元路径 环结构
下载PDF
融合残差网络的自监督社交推荐算法 被引量:1
14
作者 王玉洁 杨哲 《计算机科学与探索》 CSCD 北大核心 2024年第12期3175-3188,共14页
基于图神经网络的社交推荐算法,通过社交图和交互图的信息来学习用户和项目的嵌入,得到最终的推荐结果。但是现有算法主要利用静态的社交图结构,无法挖掘用户之间潜在的链接关系,同时也没有解决用户与项目交互行为中的噪声问题。提出了... 基于图神经网络的社交推荐算法,通过社交图和交互图的信息来学习用户和项目的嵌入,得到最终的推荐结果。但是现有算法主要利用静态的社交图结构,无法挖掘用户之间潜在的链接关系,同时也没有解决用户与项目交互行为中的噪声问题。提出了一种融合残差网络的自监督社交推荐算法。采用变分超图自编码器对社交网络进行链接预测,得到重构的社交图,以此来挖掘隐藏在用户间的积极链接关系;利用注意力机制为原始社交图和重构后的残差社交图分配不同的注意力系数,得到更加精确的用户表征;为了缓解数据中的噪声问题,构建了自适应的超图全局关系提取器,在该提取器的协作下利用局部嵌入信息和全局嵌入信息创建自监督信号,从而优化局部的嵌入表示,进而缓解噪声影响。该算法在Ciao、Epinions和Yelp三个数据集上与NGCF、LightGCN、MHCN等基线模型进行对比实验。在Ciao数据集上,Recall@10提升了17.1%~48.5%,NDCG@10提升了1.4%~37.9%;在Epinions数据集上,Recall@10提升了8.3%~56.2%,NDCG@10提升了3.7%~29.8%;在Yelp数据集上,Recall@10提升了9.1%~53.3%,NDCG@10提升了11.2%~66.6%。实验结果表明,该算法相较于基准模型有良好的推荐性能。 展开更多
关键词 社交网络 推荐系统 图卷积神经网络 超图 自监督学习
下载PDF
基于重要性采样的超图网络高效表示方法 被引量:1
15
作者 邵豪 王伦文 +1 位作者 朱然刚 刘辉 《软件学报》 EI CSCD 北大核心 2024年第9期4390-4407,共18页
现有的超图网络表示方法需要分析全批量节点和超边以实现跨层递归扩展邻域,这会带来巨大的计算开销,且因过度扩展导致更低的泛化精度.为解决这一问题,提出一种基于重要性采样的超图表示方法.首先,它将节点和超边看作是两组符合特定概率... 现有的超图网络表示方法需要分析全批量节点和超边以实现跨层递归扩展邻域,这会带来巨大的计算开销,且因过度扩展导致更低的泛化精度.为解决这一问题,提出一种基于重要性采样的超图表示方法.首先,它将节点和超边看作是两组符合特定概率测度的独立同分布样本,用积分形式解释超图的结构特征交互;其次,设计带可学习参数的邻域重要性采样规则,根据节点和超边的物理关系和特征计算采样概率,逐层递归采集固定数目的对象,构造一个更小的采样邻接矩阵;最终,利用蒙特卡洛方法近似估计整个超图的空间特征.此外,借鉴PINN的优势,将需要缩减的方差作为物理约束加入到超图神经网络中,以获取更具泛化能力的采样规则.多个数据集上的广泛实验表明,所提出的方法能够获得更准确的超图表示结果,同时具有更快的收敛速度. 展开更多
关键词 复杂网络 超图表示学习 重要性采样 蒙特卡洛估计 物理信息神经网络
下载PDF
联合图随机游走和跳跃连接的动态超图神经网络
16
作者 牛雪琼 农丽萍 +2 位作者 梁海 王俊义 林基明 《计算机应用与软件》 北大核心 2024年第3期182-187,共6页
针对传统超图神经网络难以提取节点直接邻域外关联度高的节点特征,导致全局特征信息不完整的问题,对动态超图神经网络(DHGNN)进行改进,提出联合图随机游走和跳跃连接的动态超图神经网络(RWS-DHGNN),用于非欧几里得数据的分类。该网络在D... 针对传统超图神经网络难以提取节点直接邻域外关联度高的节点特征,导致全局特征信息不完整的问题,对动态超图神经网络(DHGNN)进行改进,提出联合图随机游走和跳跃连接的动态超图神经网络(RWS-DHGNN),用于非欧几里得数据的分类。该网络在DHGNN的基础上,引入了图随机游走,从而有效地获取直接邻域外关联度高的节点特征。同时,引入残差网络的思想在超图的顶点卷积处增加跳跃连接构成残差结构。所提网络模型充分发挥图结构和超图结构的优势。在Cora数据集的标准分割和随机分割上将所提网络与GCN、HGNN、GAT和DHGNN进行对比实验,实验结果表明,该模型可以有效提高分类准确率。 展开更多
关键词 超图神经网络 随机游走 跳跃连接 节点分类
下载PDF
一种基于层次超图注意力神经网络的服务推荐算法
17
作者 杨东昇 王桂玲 郑鑫 《计算机科学》 CSCD 北大核心 2024年第11期103-111,共9页
随着Internet和Web上各种服务和API数量的迅速增加,开发人员要快速准确地找到满足其需求的API变得越来越具有挑战性,因此亟需一个高效的推荐系统。目前,将图神经网络应用于服务推荐领域取得了巨大成功,但大多数方法仍然局限于简单的交互... 随着Internet和Web上各种服务和API数量的迅速增加,开发人员要快速准确地找到满足其需求的API变得越来越具有挑战性,因此亟需一个高效的推荐系统。目前,将图神经网络应用于服务推荐领域取得了巨大成功,但大多数方法仍然局限于简单的交互,忽略了mashup和API调用之间的内在关系;为了解决这个问题,提出了一种基于层次超图注意力的服务推荐方法(H-HGSR)来进行API推荐。首先定义了8种类型的超边,并探究了对应类型超边的超图邻接矩阵生成方法,然后提出了节点级和超边级的注意力机制。节点级注意力机制用于聚合特定类型超图邻接矩阵下的不同邻居的重要信息,以捕获mashup和API之间的高阶关系;超边级注意力机制用于对从不同类型超图邻接矩阵生成的节点嵌入进行加权组合。通过学习节点级和超边级注意力的重要性,可以获得更准确的嵌入表示。最后使用一个多层感知器神经网络(MLP)进行服务推荐。在Programmable Web真实数据集上进行了大量实验,结果表明,所提H-HGSR框架优于目前最先进的服务推荐方法。 展开更多
关键词 服务推荐 超图 图神经网络 注意力机制
下载PDF
SGRec:一种基于双层信息交互的会话推荐算法
18
作者 王誉熹 彭敦陆 《小型微型计算机系统》 CSCD 北大核心 2024年第6期1392-1397,共6页
会话推荐是根据匿名用户的交互序列去推荐该用户下一个最有可能交互的项目.在现有的会话推荐模型中,大多数模型只学习了图的单层信息,这种学习方式会导致对交互序列的信息提取不完整.本文提出了一种结合项目的图级信息与序列级信息的推... 会话推荐是根据匿名用户的交互序列去推荐该用户下一个最有可能交互的项目.在现有的会话推荐模型中,大多数模型只学习了图的单层信息,这种学习方式会导致对交互序列的信息提取不完整.本文提出了一种结合项目的图级信息与序列级信息的推荐算法.图级信息是将用户的交互序列映射为一个高维空间超图,通过超图神经网络去学习图中每个节点的信息;会话中项目的序列级信息采用深度序列提取器和注意力网络去获取,最终将两组信息融合并通过自注意力网络进行下一项推荐.通过这种方法可以获得会话序列中每个项目更完整的信息.本文在真实数据集Diginetica,Tmall,Nowplaying上设置对比实验验证了算法的有效性,该算法在MRR@N和P@N上有明显提升,有效地证明了本文算法的推荐性能. 展开更多
关键词 会话推荐 超图神经网络 注意力网络 循环神经网络
下载PDF
融合全局信息的多图神经网络会话推荐
19
作者 黄涛 徐贤 《小型微型计算机系统》 CSCD 北大核心 2024年第4期769-776,共8页
基于会话的推荐旨在根据当前会话预测下一个最可能交互的物品.由于单个会话点击序列较短,仅使用会话本身的信息很难提供准确的推荐.因此,综合考虑其它会话之间的交互信息已成为一种趋势,为了提高推荐性能,本文提出一种融合全局信息的多... 基于会话的推荐旨在根据当前会话预测下一个最可能交互的物品.由于单个会话点击序列较短,仅使用会话本身的信息很难提供准确的推荐.因此,综合考虑其它会话之间的交互信息已成为一种趋势,为了提高推荐性能,本文提出一种融合全局信息的多图神经网络会话推荐模型(GIMGNN)来增强会话推荐的效果.该模型首先通过超图卷积神经网络和门控图神经网络从全局会话超图和局部会话图中学习两个级别的物品表示,然后通过注意力机制将反向位置信息融合到两种表示中,最后利用融合后的表示完成预测.在两个真实数据集Yoochoose和Diginetica上进行了一系列实验,实验结果表明,对比性能最优的基准模型,GIMGNN模型在Yoochoose上P@20和MRR@20至少提升了2.42%和4.01%,在Diginetica上P@20和MRR@20至少提升了6.56%和9.11%,验证了模型的有效性. 展开更多
关键词 会话推荐 超图卷积神经网络 门控图神经网络 注意力机制 位置信息
下载PDF
交互关系超图卷积模型的双人交互行为识别
20
作者 代金利 曹江涛 姬晓飞 《智能系统学报》 CSCD 北大核心 2024年第2期316-324,共9页
为提高学校、商场等公共场所的安全性,实现对监控视频中的偷窃、抢劫和打架斗殴等异常双人交互行为的自动识别,针对现有基于关节点数据的行为识别方法在图的创建中忽略了2个人之间的交互信息,且忽略了单人非自然连接关节点间的交互关系... 为提高学校、商场等公共场所的安全性,实现对监控视频中的偷窃、抢劫和打架斗殴等异常双人交互行为的自动识别,针对现有基于关节点数据的行为识别方法在图的创建中忽略了2个人之间的交互信息,且忽略了单人非自然连接关节点间的交互关系的问题,提出一种基于交互关系超图卷积模型用于双人交互行为的建模与识别。首先针对每一帧的关节点数据构建对应的单人超图以及双人交互关系图,其中超图同时使多个非自然连接节点信息互通,交互关系图强调节点间交互强度。将以上构建的图模型送入时空图卷积对空间和时间信息分别建模,最后通过SoftMax分类器得到识别结果。该算法框架的优势是在图的构建过程中加强考虑双人的交互关系、非自然连接点间结构关系以及四肢灵活的运动特征。在NTU数据集上的测试表明,该算法得到了97.36%的正确识别率,该网络模型提高了双人交互行为特征的表征能力,取得了比现有模型更好的识别效果。 展开更多
关键词 双人交互 行为识别 关节点数据 深度学习 时空图卷积网络 超图 图结构 神经网络
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部