Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identi...Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identification.But in traditional methods via deep convolution neural net-works,indiscriminately extracting and fusing spectral and spatial features makes it challenging toutilize the differentiated information across adjacent spectral channels.Thus,we proposed a multi-branch interleaved iterative upsampling hyperspectral image super-resolution reconstruction net-work(MIIUSR)to address the above problems.We reinforce spatial feature extraction by integrat-ing detailed features from different receptive fields across adjacent channels.Furthermore,we pro-pose an interleaved iterative upsampling process during the reconstruction stage,which progres-sively fuses incremental information among adjacent frequency bands.Additionally,we add twoparallel three dimensional(3D)feature extraction branches to the backbone network to extractspectral and spatial features of varying granularity.We further enhance the backbone network’sconstruction results by leveraging the difference between two dimensional(2D)channel-groupingspatial features and 3D multi-granularity features.The results obtained by applying the proposednetwork model to the CAVE test set show that,at a scaling factor of×4,the peak signal to noiseratio,spectral angle mapping,and structural similarity are 37.310 dB,3.525 and 0.9438,respec-tively.Besides,extensive experiments conducted on the Harvard and Foster datasets demonstratethe superior potential of the proposed model in hyperspectral super-resolution reconstruction.展开更多
Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,w...Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,which is beneficial for subsequent applications.The development of deep learning has promoted significant progress in hyperspectral image super-resolution,and the powerful expression capabilities of deep neural networks make the predicted results more reliable.Recently,several latest deep learning technologies have made the hyperspectral image super-resolution method explode.However,a comprehensive review and analysis of the latest deep learning methods from the hyperspectral image super-resolution perspective is absent.To this end,in this survey,we first introduce the concept of hyperspectral image super-resolution and classify the methods from the perspectives with or without auxiliary information.Then,we review the learning-based methods in three categories,including single hyperspectral image super-resolution,panchromatic-based hyperspectral image super-resolution,and multispectral-based hyperspectral image super-resolution.Subsequently,we summarize the commonly used hyperspectral dataset,and the evaluations for some representative methods in three categories are performed qualitatively and quantitatively.Moreover,we briefly introduce several typical applications of hyperspectral image super-resolution,including ground object classification,urban change detection,and ecosystem monitoring.Finally,we provide the conclusion and challenges in existing learning-based methods,looking forward to potential future research directions.展开更多
Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi...Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels.展开更多
Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has...Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has significant research value and is widely used in fields such as medical imaging,satellite image processing,and security surveillance.Despite significant progress in existing research,challenges remain in reconstructing clear and complex texture details,with issues such as edge blurring and artifacts still present.The visual perception effect still needs further enhancement.Therefore,this study proposes a Pyramid Separable Channel Attention Network(PSCAN)for the SISR task.Thismethod designs a convolutional backbone network composed of Pyramid Separable Channel Attention blocks to effectively extract and fuse multi-scale features.This expands the model’s receptive field,reduces resolution loss,and enhances the model’s ability to reconstruct texture details.Additionally,an innovative artifact loss function is designed to better distinguish between artifacts and real edge details,reducing artifacts in the reconstructed images.We conducted comprehensive ablation and comparative experiments on the Arabidopsis root image dataset and several public datasets.The experimental results show that the proposed PSCAN method achieves the best-known performance in both subjective visual effects and objective evaluation metrics,with improvements of 0.84 in Peak Signal-to-Noise Ratio(PSNR)and 0.017 in Structural Similarity Index(SSIM).This demonstrates that the method can effectively preserve high-frequency texture details,reduce artifacts,and have good generalization performance.展开更多
Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,...Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,the need for a larger pixel size of detector to improve imaging photosensitivity,field-of-view,and signal-to-noise ratio often leads to the loss of sub-pixel information and limited pixel resolution.Additionally,the twin-image appearing in the reconstruction severely degrades the quality of the reconstructed image.The deep learning(DL)approach has emerged as a powerful tool for phase retrieval in DIHM,effectively addressing these challenges.However,most DL-based strategies are datadriven or end-to-end net approaches,suffering from excessive data dependency and limited generalization ability.Herein,a novel multi-prior physics-enhanced neural network with pixel super-resolution(MPPN-PSR)for phase retrieval of DIHM is proposed.It encapsulates the physical model prior,sparsity prior and deep image prior in an untrained deep neural network.The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional and learning-based phase retrieval methods.With the capabilities of pixel super-resolution,twin-image elimination and high-throughput jointly from a single-shot intensity measurement,the proposed DIHM approach is expected to be widely adopted in biomedical workflow and industrial measurement.展开更多
By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral...By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral(HR-HS)image.With previously collected large-amount of external data,these methods are intuitively realised under the full supervision of the ground-truth data.Thus,the database construction in merging the low-resolution(LR)HS(LR-HS)and HR multispectral(MS)or RGB image research paradigm,commonly named as HSI SR,requires collecting corresponding training triplets:HR-MS(RGB),LR-HS and HR-HS image simultaneously,and often faces dif-ficulties in reality.The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved perfor-mance to the real images captured under diverse environments.To handle the above-mentioned limitations,the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem.The authors advocate that it is possible to train a specific CNN model at test time,called as deep internal learning(DIL),by on-line preparing the training triplet samples from the observed LR-HS/HR-MS(or RGB)images and the down-sampled LR-HS version.However,the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors,which would result in limited reconstruction performance.To solve this problem,the authors further exploit deep self-supervised learning(DSL)by considering the observations as the unlabelled training samples.Specifically,the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation,and then the reconstruction errors of the observations were formulated for measuring the network modelling performance.By consolidating the DIL and DSL into a unified deep framework,the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per obser-vation.To verify the effectiveness of the proposed approach,extensive experiments have been conducted on two benchmark HS datasets,including the CAVE and Harvard datasets,and demonstrate the great performance gain of the proposed method over the state-of-the-art methods.展开更多
Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification...Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification accuracy of hyperspectral images.To address this problem,this article proposes an algorithm based on multiscale fusion and transformer network for hyperspectral image classification.Firstly,the low-level spatial-spectral features are extracted by multi-scale residual structure.Secondly,an attention module is introduced to focus on the more important spatialspectral information.Finally,high-level semantic features are represented and learned by a token learner and an improved transformer encoder.The proposed algorithm is compared with six classical hyperspectral classification algorithms on real hyperspectral images.The experimental results show that the proposed algorithm effectively improves the land cover classification accuracy of hyperspectral images.展开更多
Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convol...Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.展开更多
The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production ...The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production costs,which diminishes the quality of the VCO.This study used NIR hyperspectral imaging in the wavelength region 900-1,650 nm to create a quantitative model for the detection of PKO contaminants(0-100%)in VCO and to develop predictive mapping.The prediction equation for the adulteration of VCO with PKO was constructed using the partial least squares regression method.The best predictive model was pre-processed using the standard normal variate method,and the coefficient of determination of prediction was 0.991,the root mean square error of prediction was 2.93%,and the residual prediction deviation was 10.37.The results showed that this model could be applied for quantifying the adulteration concentration of PKO in VCO.The prediction adulteration concentration mapping of VCO with PKO was created from a calibration model that showed the color level according to the adulteration concentration in the range of 0-100%.NIR hyperspectral imaging could be clearly used to quantify the adulteration of VCO with a color level map that provides a quick,accurate,and non-destructive detection method.展开更多
With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and th...With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models.展开更多
Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the r...Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the rapid progress in convolutional neural networks(CNNs)has achieved superior performance in the area of medical image super-resolution.However,the traditional CNN approaches use interpolation techniques as a preprocessing stage to enlarge low-resolution magnetic resonance(MR)images,adding extra noise in the models and more memory consumption.Furthermore,conventional deep CNN approaches used layers in series-wise connection to create the deeper mode,because this later end layer cannot receive complete information and work as a dead layer.In this paper,we propose Inception-ResNet-based Network for MRI Image Super-Resolution known as IRMRIS.In our proposed approach,a bicubic interpolation is replaced with a deconvolution layer to learn the upsampling filters.Furthermore,a residual skip connection with the Inception block is used to reconstruct a high-resolution output image from a low-quality input image.Quantitative and qualitative evaluations of the proposed method are supported through extensive experiments in reconstructing sharper and clean texture details as compared to the state-of-the-art methods.展开更多
Hyperspectral images can easily discriminate different materials due to their fine spectral resolution.However,obtaining a hyperspectral image(HSI)with a high spatial resolution is still a challenge as we are limited ...Hyperspectral images can easily discriminate different materials due to their fine spectral resolution.However,obtaining a hyperspectral image(HSI)with a high spatial resolution is still a challenge as we are limited by the high computing requirements.The spatial resolution of HSI can be enhanced by utilizing Deep Learning(DL)based Super-resolution(SR).A 3D-CNNHSR model is developed in the present investigation for 3D spatial super-resolution for HSI,without losing the spectral content.The 3DCNNHSR model was tested for the Hyperion HSI.The pre-processing of the HSI was done before applying the SR model so that the full advantage of hyperspectral data can be utilized with minimizing the errors.The key innovation of the present investigation is that it used 3D convolution as it simultaneously applies convolution in both the spatial and spectral dimensions and captures spatial-spectral features.By clustering contiguous spectral content together,a cube is formed and by convolving the cube with the 3D kernel a 3D convolution is realized.The 3D-CNNHSR model was compared with a 2D-CNN model,additionally,the assessment was based on higherresolution data from the Sentinel-2 satellite.Based on the evaluation metrics it was observed that the 3D-CNNHSR model yields better results for the SR of HSI with efficient computational speed,which is significantly less than previous studies.展开更多
Accurate histopathology classification is a crucial factor in the diagnosis and treatment of Cholangiocarcinoma(CCA).Hyperspectral images(HSI)provide rich spectral information than ordinary RGB images,making them more...Accurate histopathology classification is a crucial factor in the diagnosis and treatment of Cholangiocarcinoma(CCA).Hyperspectral images(HSI)provide rich spectral information than ordinary RGB images,making them more useful for medical diagnosis.The Convolutional Neural Network(CNN)is commonly employed in hyperspectral image classification due to its remarkable capacity for feature extraction and image classification.However,many existing CNN-based HSI classification methods tend to ignore the importance of image spatial context information and the interdependence between spectral channels,leading to unsatisfied classification performance.Thus,to address these issues,this paper proposes a Spatial-Spectral Joint Network(SSJN)model for hyperspectral image classification that utilizes spatial self-attention and spectral feature extraction.The SSJN model is derived from the ResNet18 network and implemented with the non-local and Coordinate Attention(CA)modules,which extract long-range dependencies on image space and enhance spatial features through the Branch Attention(BA)module to emphasize the region of interest.Furthermore,the SSJN model employs Conv-LSTM modules to extract long-range depen-dencies in the image spectral domain.This addresses the gradient disappearance/explosion phenom-ena and enhances the model classification accuracy.The experimental results show that the pro-posed SSJN model is more efficient in leveraging the spatial and spectral information of hyperspec-tral images on multidimensional microspectral datasets of CCA,leading to higher classification accuracy,and may have useful references for medical diagnosis of CCA.展开更多
Recently,deep learning has achieved considerable results in the hyperspectral image(HSI)classification.However,most available deep networks require ample and authentic samples to better train the models,which is expen...Recently,deep learning has achieved considerable results in the hyperspectral image(HSI)classification.However,most available deep networks require ample and authentic samples to better train the models,which is expensive and inefficient in practical tasks.Existing few‐shot learning(FSL)methods generally ignore the potential relationships between non‐local spatial samples that would better represent the underlying features of HSI.To solve the above issues,a novel deep transformer and few‐shot learning(DTFSL)classification framework is proposed,attempting to realize fine‐grained classification of HSI with only a few‐shot instances.Specifically,the spatial attention and spectral query modules are introduced to overcome the constraint of the convolution kernel and consider the information between long‐distance location(non‐local)samples to reduce the uncertainty of classes.Next,the network is trained with episodes and task‐based learning strategies to learn a metric space,which can continuously enhance its modelling capability.Furthermore,the developed approach combines the advantages of domain adaptation to reduce the variation in inter‐domain distribution and realize distribution alignment.On three publicly available HSI data,extensive experiments have indicated that the proposed DT‐FSL yields better results concerning state‐of‐the‐art algorithms.展开更多
Compressed sensing(CS),as an efficient data transmission method,has achieved great success in the field of data transmission such as image,video and text.It can robustly recover signals from fewer Measurements,effecti...Compressed sensing(CS),as an efficient data transmission method,has achieved great success in the field of data transmission such as image,video and text.It can robustly recover signals from fewer Measurements,effectively alleviating the bandwidth pressure during data transmission.However,CS has many shortcomings in the transmission of hyperspectral image(HSI)data.This work aims to consider the application of CS in the transmission of hyperspectral image(HSI)data,and provides a feasible research scheme for CS of HSI data.HSI has rich spectral information and spatial information in bands,which can reflect the physical properties of the target.Most of the hyperspectral image compressed sensing(HSICS)algorithms cannot effectively use the inter-band information of HSI,resulting in poor reconstruction effects.In this paper,A three-stage hyperspectral image compression sensing algorithm(Three-stages HSICS)is proposed to obtain intra-band and inter-band characteristics of HSI,which can improve the reconstruction accuracy of HSI.Here,we establish a multi-objective band selection(Mop-BS)model,amulti-hypothesis prediction(MHP)model and a residual sparse(ReWSR)model for HSI,and use a staged reconstruction method to restore the compressed HSI.The simulation results show that the three-stage HSICS successfully improves the reconstruction accuracy of HSICS,and it performs best among all comparison algorithms.展开更多
In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The prop...In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The proposed approach incorporates the linear spectral mixture model and spatial-spectral spread transform model into the learning phase of network,aiming to fully exploit the spatial-spectral information of HS and MS images,and improve the spectral fidelity of fusion images.Experiments on two real remote sensing data under different resolutions demonstrate that compared with some state-of-the-art HS and MS image fusion methods,the proposed approach achieves superior spectral fidelities and lower fusion errors.展开更多
Hyperspectral remote sensing/imaging spectroscopy is a novel approach to reaching a spectrum from all the places of a huge array of spatial places so that several spectral wavelengths are utilized for making coherent ...Hyperspectral remote sensing/imaging spectroscopy is a novel approach to reaching a spectrum from all the places of a huge array of spatial places so that several spectral wavelengths are utilized for making coherent images.Hyperspectral remote sensing contains acquisition of digital images from several narrow,contiguous spectral bands throughout the visible,Thermal Infrared(TIR),Near Infrared(NIR),and Mid-Infrared(MIR)regions of the electromagnetic spectrum.In order to the application of agricultural regions,remote sensing approaches are studied and executed to their benefit of continuous and quantitativemonitoring.Particularly,hyperspectral images(HSI)are considered the precise for agriculture as they can offer chemical and physical data on vegetation.With this motivation,this article presents a novel Hurricane Optimization Algorithm with Deep Transfer Learning Driven Crop Classification(HOADTL-CC)model onHyperspectralRemote Sensing Images.The presentedHOADTL-CC model focuses on the identification and categorization of crops on hyperspectral remote sensing images.To accomplish this,the presentedHOADTL-CC model involves the design ofHOAwith capsule network(CapsNet)model for generating a set of useful feature vectors.Besides,Elman neural network(ENN)model is applied to allot proper class labels into the input HSI.Finally,glowworm swarm optimization(GSO)algorithm is exploited to fine tune the ENNparameters involved in this article.The experimental result scrutiny of the HOADTL-CC method can be tested with the help of benchmark dataset and the results are assessed under distinct aspects.Extensive comparative studies stated the enhanced performance of the HOADTL-CC model over recent approaches with maximum accuracy of 99.51%.展开更多
Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is importa...Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is important for effective classification outcomes.Additionally,the recent advancements of deep learning(DL)models make it possible in several application areas.In addition,the performance of the DL models is mainly based on the hyperparameter setting which can be resolved by the design of metaheuristics.In this view,this article develops an automated red deer algorithm with deep learning enabled hyperspec-tral image(HSI)classification(RDADL-HIC)technique.The proposed RDADL-HIC technique aims to effectively determine the HSI images.In addition,the RDADL-HIC technique comprises a NASNetLarge model with Adagrad optimi-zer.Moreover,RDA with gated recurrent unit(GRU)approach is used for the identification and classification of HSIs.The design of Adagrad optimizer with RDA helps to optimally tune the hyperparameters of the NASNetLarge and GRU models respectively.The experimental results stated the supremacy of the RDADL-HIC model and the results are inspected interms of different measures.The comparison study of the RDADL-HIC model demonstrated the enhanced per-formance over its recent state of art approaches.展开更多
Spectral unmixing helps to identify different components present in the spectral mixtures which occur in the uppermost layer of the area owing to the low spatial resolution of hyperspectral images.Most spectral unmixi...Spectral unmixing helps to identify different components present in the spectral mixtures which occur in the uppermost layer of the area owing to the low spatial resolution of hyperspectral images.Most spectral unmixing methods are globally based and do not consider the spectral variability among its endmembers that occur due to illumination,atmospheric,and environmental conditions.Here,endmember bundle extraction plays a major role in overcoming the above-mentioned limitations leading to more accurate abundance fractions.Accordingly,a two-stage approach is proposed to extract endmembers through endmember bundles in hyperspectral images.The divide and conquer method is applied as the first step in subset images with only the non-redundant bands to extract endmembers using the Vertex Component Analysis(VCA)and N-FINDR algorithms.A fuzzy rule-based inference system utilizing spectral matching parameters is proposed in the second step to categorize endmembers.The endmember with the minimum error is chosen as the final endmember in each specific category.The proposed method is simple and automatically considers endmember variability in hyperspectral images.The efficiency of the proposed method is evaluated using two real hyperspectral datasets.The average spectral angle and abundance angle are used to analyze the performance measures.展开更多
Hyperspectral imaging instruments could capture detailed spatial information and rich spectral signs of observed scenes.Much spatial information and spectral signatures of hyperspectral images(HSIs)present greater pot...Hyperspectral imaging instruments could capture detailed spatial information and rich spectral signs of observed scenes.Much spatial information and spectral signatures of hyperspectral images(HSIs)present greater potential for detecting and classifying fine crops.The accurate classification of crop kinds utilizing hyperspectral remote sensing imaging(RSI)has become an indispensable application in the agricultural domain.It is significant for the prediction and growth monitoring of crop yields.Amongst the deep learning(DL)techniques,Convolution Neural Network(CNN)was the best method for classifying HSI for their incredible local contextual modeling ability,enabling spectral and spatial feature extraction.This article designs a Hybrid Multi-Strategy Aquila Optimization with a Deep Learning-Driven Crop Type Classification(HMAODL-CTC)algorithm onHSI.The proposed HMAODL-CTC model mainly intends to categorize different types of crops on HSI.To accomplish this,the presented HMAODL-CTC model initially carries out image preprocessing to improve image quality.In addition,the presented HMAODL-CTC model develops dilated convolutional neural network(CNN)for feature extraction.For hyperparameter tuning of the dilated CNN model,the HMAO algorithm is utilized.Eventually,the presented HMAODL-CTC model uses an extreme learning machine(ELM)model for crop type classification.A comprehensive set of simulations were performed to illustrate the enhanced performance of the presented HMAODL-CTC algorithm.Extensive comparison studies reported the improved performance of the presented HMAODL-CTC algorithm over other compared methods.展开更多
基金the National Natural Science Foun-dation of China(Nos.61471263,61872267 and U21B2024)the Natural Science Foundation of Tianjin,China(No.16JCZDJC31100)Tianjin University Innovation Foundation(No.2021XZC0024).
文摘Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identification.But in traditional methods via deep convolution neural net-works,indiscriminately extracting and fusing spectral and spatial features makes it challenging toutilize the differentiated information across adjacent spectral channels.Thus,we proposed a multi-branch interleaved iterative upsampling hyperspectral image super-resolution reconstruction net-work(MIIUSR)to address the above problems.We reinforce spatial feature extraction by integrat-ing detailed features from different receptive fields across adjacent channels.Furthermore,we pro-pose an interleaved iterative upsampling process during the reconstruction stage,which progres-sively fuses incremental information among adjacent frequency bands.Additionally,we add twoparallel three dimensional(3D)feature extraction branches to the backbone network to extractspectral and spatial features of varying granularity.We further enhance the backbone network’sconstruction results by leveraging the difference between two dimensional(2D)channel-groupingspatial features and 3D multi-granularity features.The results obtained by applying the proposednetwork model to the CAVE test set show that,at a scaling factor of×4,the peak signal to noiseratio,spectral angle mapping,and structural similarity are 37.310 dB,3.525 and 0.9438,respec-tively.Besides,extensive experiments conducted on the Harvard and Foster datasets demonstratethe superior potential of the proposed model in hyperspectral super-resolution reconstruction.
基金supported in part by the National Natural Science Foundation of China(62276192)。
文摘Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,which is beneficial for subsequent applications.The development of deep learning has promoted significant progress in hyperspectral image super-resolution,and the powerful expression capabilities of deep neural networks make the predicted results more reliable.Recently,several latest deep learning technologies have made the hyperspectral image super-resolution method explode.However,a comprehensive review and analysis of the latest deep learning methods from the hyperspectral image super-resolution perspective is absent.To this end,in this survey,we first introduce the concept of hyperspectral image super-resolution and classify the methods from the perspectives with or without auxiliary information.Then,we review the learning-based methods in three categories,including single hyperspectral image super-resolution,panchromatic-based hyperspectral image super-resolution,and multispectral-based hyperspectral image super-resolution.Subsequently,we summarize the commonly used hyperspectral dataset,and the evaluations for some representative methods in three categories are performed qualitatively and quantitatively.Moreover,we briefly introduce several typical applications of hyperspectral image super-resolution,including ground object classification,urban change detection,and ecosystem monitoring.Finally,we provide the conclusion and challenges in existing learning-based methods,looking forward to potential future research directions.
基金supported by the UC-National Lab In-Residence Graduate Fellowship Grant L21GF3606supported by a DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowship+1 种基金supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project numbers 20170668PRD1 and 20210213ERsupported by the NGA under Contract No.HM04762110003.
文摘Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels.
基金supported by Beijing Municipal Science and Technology Project(No.Z221100007122003).
文摘Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has significant research value and is widely used in fields such as medical imaging,satellite image processing,and security surveillance.Despite significant progress in existing research,challenges remain in reconstructing clear and complex texture details,with issues such as edge blurring and artifacts still present.The visual perception effect still needs further enhancement.Therefore,this study proposes a Pyramid Separable Channel Attention Network(PSCAN)for the SISR task.Thismethod designs a convolutional backbone network composed of Pyramid Separable Channel Attention blocks to effectively extract and fuse multi-scale features.This expands the model’s receptive field,reduces resolution loss,and enhances the model’s ability to reconstruct texture details.Additionally,an innovative artifact loss function is designed to better distinguish between artifacts and real edge details,reducing artifacts in the reconstructed images.We conducted comprehensive ablation and comparative experiments on the Arabidopsis root image dataset and several public datasets.The experimental results show that the proposed PSCAN method achieves the best-known performance in both subjective visual effects and objective evaluation metrics,with improvements of 0.84 in Peak Signal-to-Noise Ratio(PSNR)and 0.017 in Structural Similarity Index(SSIM).This demonstrates that the method can effectively preserve high-frequency texture details,reduce artifacts,and have good generalization performance.
基金National Natural Science Foundation of China (62275267, 62335018, 12127805, 62105359)National Key Research and Development Program of China (2021YFF0700303, 2022YFE0100700)Youth Innovation Promotion Association, CAS (2021401)
文摘Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,the need for a larger pixel size of detector to improve imaging photosensitivity,field-of-view,and signal-to-noise ratio often leads to the loss of sub-pixel information and limited pixel resolution.Additionally,the twin-image appearing in the reconstruction severely degrades the quality of the reconstructed image.The deep learning(DL)approach has emerged as a powerful tool for phase retrieval in DIHM,effectively addressing these challenges.However,most DL-based strategies are datadriven or end-to-end net approaches,suffering from excessive data dependency and limited generalization ability.Herein,a novel multi-prior physics-enhanced neural network with pixel super-resolution(MPPN-PSR)for phase retrieval of DIHM is proposed.It encapsulates the physical model prior,sparsity prior and deep image prior in an untrained deep neural network.The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional and learning-based phase retrieval methods.With the capabilities of pixel super-resolution,twin-image elimination and high-throughput jointly from a single-shot intensity measurement,the proposed DIHM approach is expected to be widely adopted in biomedical workflow and industrial measurement.
基金Ministry of Education,Culture,Sports,Science and Technology,Grant/Award Number:20K11867。
文摘By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral(HR-HS)image.With previously collected large-amount of external data,these methods are intuitively realised under the full supervision of the ground-truth data.Thus,the database construction in merging the low-resolution(LR)HS(LR-HS)and HR multispectral(MS)or RGB image research paradigm,commonly named as HSI SR,requires collecting corresponding training triplets:HR-MS(RGB),LR-HS and HR-HS image simultaneously,and often faces dif-ficulties in reality.The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved perfor-mance to the real images captured under diverse environments.To handle the above-mentioned limitations,the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem.The authors advocate that it is possible to train a specific CNN model at test time,called as deep internal learning(DIL),by on-line preparing the training triplet samples from the observed LR-HS/HR-MS(or RGB)images and the down-sampled LR-HS version.However,the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors,which would result in limited reconstruction performance.To solve this problem,the authors further exploit deep self-supervised learning(DSL)by considering the observations as the unlabelled training samples.Specifically,the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation,and then the reconstruction errors of the observations were formulated for measuring the network modelling performance.By consolidating the DIL and DSL into a unified deep framework,the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per obser-vation.To verify the effectiveness of the proposed approach,extensive experiments have been conducted on two benchmark HS datasets,including the CAVE and Harvard datasets,and demonstrate the great performance gain of the proposed method over the state-of-the-art methods.
基金National Natural Science Foundation of China(No.62201457)Natural Science Foundation of Shaanxi Province(Nos.2022JQ-668,2022JQ-588)。
文摘Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification accuracy of hyperspectral images.To address this problem,this article proposes an algorithm based on multiscale fusion and transformer network for hyperspectral image classification.Firstly,the low-level spatial-spectral features are extracted by multi-scale residual structure.Secondly,an attention module is introduced to focus on the more important spatialspectral information.Finally,high-level semantic features are represented and learned by a token learner and an improved transformer encoder.The proposed algorithm is compared with six classical hyperspectral classification algorithms on real hyperspectral images.The experimental results show that the proposed algorithm effectively improves the land cover classification accuracy of hyperspectral images.
基金Natural Science Foundation of Shandong Province,China(Grant No.ZR202111230202).
文摘Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.
基金supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D.Program(PHD/0225/2561)the Faculty of Engineering,Kamphaeng Saen Campus,Kasetsart University,Thailand。
文摘The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production costs,which diminishes the quality of the VCO.This study used NIR hyperspectral imaging in the wavelength region 900-1,650 nm to create a quantitative model for the detection of PKO contaminants(0-100%)in VCO and to develop predictive mapping.The prediction equation for the adulteration of VCO with PKO was constructed using the partial least squares regression method.The best predictive model was pre-processed using the standard normal variate method,and the coefficient of determination of prediction was 0.991,the root mean square error of prediction was 2.93%,and the residual prediction deviation was 10.37.The results showed that this model could be applied for quantifying the adulteration concentration of PKO in VCO.The prediction adulteration concentration mapping of VCO with PKO was created from a calibration model that showed the color level according to the adulteration concentration in the range of 0-100%.NIR hyperspectral imaging could be clearly used to quantify the adulteration of VCO with a color level map that provides a quick,accurate,and non-destructive detection method.
文摘With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models.
基金supported by Balochistan University of Engineering and Technology,Khuzdar,Balochistan,Pakistan.
文摘Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the rapid progress in convolutional neural networks(CNNs)has achieved superior performance in the area of medical image super-resolution.However,the traditional CNN approaches use interpolation techniques as a preprocessing stage to enlarge low-resolution magnetic resonance(MR)images,adding extra noise in the models and more memory consumption.Furthermore,conventional deep CNN approaches used layers in series-wise connection to create the deeper mode,because this later end layer cannot receive complete information and work as a dead layer.In this paper,we propose Inception-ResNet-based Network for MRI Image Super-Resolution known as IRMRIS.In our proposed approach,a bicubic interpolation is replaced with a deconvolution layer to learn the upsampling filters.Furthermore,a residual skip connection with the Inception block is used to reconstruct a high-resolution output image from a low-quality input image.Quantitative and qualitative evaluations of the proposed method are supported through extensive experiments in reconstructing sharper and clean texture details as compared to the state-of-the-art methods.
基金Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under Grant Number RGP2/80/44.
文摘Hyperspectral images can easily discriminate different materials due to their fine spectral resolution.However,obtaining a hyperspectral image(HSI)with a high spatial resolution is still a challenge as we are limited by the high computing requirements.The spatial resolution of HSI can be enhanced by utilizing Deep Learning(DL)based Super-resolution(SR).A 3D-CNNHSR model is developed in the present investigation for 3D spatial super-resolution for HSI,without losing the spectral content.The 3DCNNHSR model was tested for the Hyperion HSI.The pre-processing of the HSI was done before applying the SR model so that the full advantage of hyperspectral data can be utilized with minimizing the errors.The key innovation of the present investigation is that it used 3D convolution as it simultaneously applies convolution in both the spatial and spectral dimensions and captures spatial-spectral features.By clustering contiguous spectral content together,a cube is formed and by convolving the cube with the 3D kernel a 3D convolution is realized.The 3D-CNNHSR model was compared with a 2D-CNN model,additionally,the assessment was based on higherresolution data from the Sentinel-2 satellite.Based on the evaluation metrics it was observed that the 3D-CNNHSR model yields better results for the SR of HSI with efficient computational speed,which is significantly less than previous studies.
基金supported by National Natural Science Foundation of China(No.62101040).
文摘Accurate histopathology classification is a crucial factor in the diagnosis and treatment of Cholangiocarcinoma(CCA).Hyperspectral images(HSI)provide rich spectral information than ordinary RGB images,making them more useful for medical diagnosis.The Convolutional Neural Network(CNN)is commonly employed in hyperspectral image classification due to its remarkable capacity for feature extraction and image classification.However,many existing CNN-based HSI classification methods tend to ignore the importance of image spatial context information and the interdependence between spectral channels,leading to unsatisfied classification performance.Thus,to address these issues,this paper proposes a Spatial-Spectral Joint Network(SSJN)model for hyperspectral image classification that utilizes spatial self-attention and spectral feature extraction.The SSJN model is derived from the ResNet18 network and implemented with the non-local and Coordinate Attention(CA)modules,which extract long-range dependencies on image space and enhance spatial features through the Branch Attention(BA)module to emphasize the region of interest.Furthermore,the SSJN model employs Conv-LSTM modules to extract long-range depen-dencies in the image spectral domain.This addresses the gradient disappearance/explosion phenom-ena and enhances the model classification accuracy.The experimental results show that the pro-posed SSJN model is more efficient in leveraging the spatial and spectral information of hyperspec-tral images on multidimensional microspectral datasets of CCA,leading to higher classification accuracy,and may have useful references for medical diagnosis of CCA.
基金supported by the National Natural Science Foundation of China under Grant 62161160336 and Grant 42030111.
文摘Recently,deep learning has achieved considerable results in the hyperspectral image(HSI)classification.However,most available deep networks require ample and authentic samples to better train the models,which is expensive and inefficient in practical tasks.Existing few‐shot learning(FSL)methods generally ignore the potential relationships between non‐local spatial samples that would better represent the underlying features of HSI.To solve the above issues,a novel deep transformer and few‐shot learning(DTFSL)classification framework is proposed,attempting to realize fine‐grained classification of HSI with only a few‐shot instances.Specifically,the spatial attention and spectral query modules are introduced to overcome the constraint of the convolution kernel and consider the information between long‐distance location(non‐local)samples to reduce the uncertainty of classes.Next,the network is trained with episodes and task‐based learning strategies to learn a metric space,which can continuously enhance its modelling capability.Furthermore,the developed approach combines the advantages of domain adaptation to reduce the variation in inter‐domain distribution and realize distribution alignment.On three publicly available HSI data,extensive experiments have indicated that the proposed DT‐FSL yields better results concerning state‐of‐the‐art algorithms.
基金supported by the National Natural Science Foundation of China under Grant No.61806138Key R&D program of Shanxi Province(High Technology)under Grant No.201903D121119Science and Technology Development Foundation of the Central Guiding Local under Grant No.YDZJSX2021A038.
文摘Compressed sensing(CS),as an efficient data transmission method,has achieved great success in the field of data transmission such as image,video and text.It can robustly recover signals from fewer Measurements,effectively alleviating the bandwidth pressure during data transmission.However,CS has many shortcomings in the transmission of hyperspectral image(HSI)data.This work aims to consider the application of CS in the transmission of hyperspectral image(HSI)data,and provides a feasible research scheme for CS of HSI data.HSI has rich spectral information and spatial information in bands,which can reflect the physical properties of the target.Most of the hyperspectral image compressed sensing(HSICS)algorithms cannot effectively use the inter-band information of HSI,resulting in poor reconstruction effects.In this paper,A three-stage hyperspectral image compression sensing algorithm(Three-stages HSICS)is proposed to obtain intra-band and inter-band characteristics of HSI,which can improve the reconstruction accuracy of HSI.Here,we establish a multi-objective band selection(Mop-BS)model,amulti-hypothesis prediction(MHP)model and a residual sparse(ReWSR)model for HSI,and use a staged reconstruction method to restore the compressed HSI.The simulation results show that the three-stage HSICS successfully improves the reconstruction accuracy of HSICS,and it performs best among all comparison algorithms.
基金National Natural Science Foundation of China(No.61902060)Natural Science Foundation of Shanghai,China(No.19ZR1453800)Fundamental Research Funds for the Central Universities,China(No.2232021D-33)。
文摘In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The proposed approach incorporates the linear spectral mixture model and spatial-spectral spread transform model into the learning phase of network,aiming to fully exploit the spatial-spectral information of HS and MS images,and improve the spectral fidelity of fusion images.Experiments on two real remote sensing data under different resolutions demonstrate that compared with some state-of-the-art HS and MS image fusion methods,the proposed approach achieves superior spectral fidelities and lower fusion errors.
基金the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under Grant Number(25/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R303)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR28.
文摘Hyperspectral remote sensing/imaging spectroscopy is a novel approach to reaching a spectrum from all the places of a huge array of spatial places so that several spectral wavelengths are utilized for making coherent images.Hyperspectral remote sensing contains acquisition of digital images from several narrow,contiguous spectral bands throughout the visible,Thermal Infrared(TIR),Near Infrared(NIR),and Mid-Infrared(MIR)regions of the electromagnetic spectrum.In order to the application of agricultural regions,remote sensing approaches are studied and executed to their benefit of continuous and quantitativemonitoring.Particularly,hyperspectral images(HSI)are considered the precise for agriculture as they can offer chemical and physical data on vegetation.With this motivation,this article presents a novel Hurricane Optimization Algorithm with Deep Transfer Learning Driven Crop Classification(HOADTL-CC)model onHyperspectralRemote Sensing Images.The presentedHOADTL-CC model focuses on the identification and categorization of crops on hyperspectral remote sensing images.To accomplish this,the presentedHOADTL-CC model involves the design ofHOAwith capsule network(CapsNet)model for generating a set of useful feature vectors.Besides,Elman neural network(ENN)model is applied to allot proper class labels into the input HSI.Finally,glowworm swarm optimization(GSO)algorithm is exploited to fine tune the ENNparameters involved in this article.The experimental result scrutiny of the HOADTL-CC method can be tested with the help of benchmark dataset and the results are assessed under distinct aspects.Extensive comparative studies stated the enhanced performance of the HOADTL-CC model over recent approaches with maximum accuracy of 99.51%.
文摘Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is important for effective classification outcomes.Additionally,the recent advancements of deep learning(DL)models make it possible in several application areas.In addition,the performance of the DL models is mainly based on the hyperparameter setting which can be resolved by the design of metaheuristics.In this view,this article develops an automated red deer algorithm with deep learning enabled hyperspec-tral image(HSI)classification(RDADL-HIC)technique.The proposed RDADL-HIC technique aims to effectively determine the HSI images.In addition,the RDADL-HIC technique comprises a NASNetLarge model with Adagrad optimi-zer.Moreover,RDA with gated recurrent unit(GRU)approach is used for the identification and classification of HSIs.The design of Adagrad optimizer with RDA helps to optimally tune the hyperparameters of the NASNetLarge and GRU models respectively.The experimental results stated the supremacy of the RDADL-HIC model and the results are inspected interms of different measures.The comparison study of the RDADL-HIC model demonstrated the enhanced per-formance over its recent state of art approaches.
文摘Spectral unmixing helps to identify different components present in the spectral mixtures which occur in the uppermost layer of the area owing to the low spatial resolution of hyperspectral images.Most spectral unmixing methods are globally based and do not consider the spectral variability among its endmembers that occur due to illumination,atmospheric,and environmental conditions.Here,endmember bundle extraction plays a major role in overcoming the above-mentioned limitations leading to more accurate abundance fractions.Accordingly,a two-stage approach is proposed to extract endmembers through endmember bundles in hyperspectral images.The divide and conquer method is applied as the first step in subset images with only the non-redundant bands to extract endmembers using the Vertex Component Analysis(VCA)and N-FINDR algorithms.A fuzzy rule-based inference system utilizing spectral matching parameters is proposed in the second step to categorize endmembers.The endmember with the minimum error is chosen as the final endmember in each specific category.The proposed method is simple and automatically considers endmember variability in hyperspectral images.The efficiency of the proposed method is evaluated using two real hyperspectral datasets.The average spectral angle and abundance angle are used to analyze the performance measures.
基金This work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R384)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Hyperspectral imaging instruments could capture detailed spatial information and rich spectral signs of observed scenes.Much spatial information and spectral signatures of hyperspectral images(HSIs)present greater potential for detecting and classifying fine crops.The accurate classification of crop kinds utilizing hyperspectral remote sensing imaging(RSI)has become an indispensable application in the agricultural domain.It is significant for the prediction and growth monitoring of crop yields.Amongst the deep learning(DL)techniques,Convolution Neural Network(CNN)was the best method for classifying HSI for their incredible local contextual modeling ability,enabling spectral and spatial feature extraction.This article designs a Hybrid Multi-Strategy Aquila Optimization with a Deep Learning-Driven Crop Type Classification(HMAODL-CTC)algorithm onHSI.The proposed HMAODL-CTC model mainly intends to categorize different types of crops on HSI.To accomplish this,the presented HMAODL-CTC model initially carries out image preprocessing to improve image quality.In addition,the presented HMAODL-CTC model develops dilated convolutional neural network(CNN)for feature extraction.For hyperparameter tuning of the dilated CNN model,the HMAO algorithm is utilized.Eventually,the presented HMAODL-CTC model uses an extreme learning machine(ELM)model for crop type classification.A comprehensive set of simulations were performed to illustrate the enhanced performance of the presented HMAODL-CTC algorithm.Extensive comparison studies reported the improved performance of the presented HMAODL-CTC algorithm over other compared methods.