Charge-changing cross section(σcc)measurements via the transmission method have recently seen significant progress with the aim of determining the charge radii of exotic nuclei.In this work,we report a newσcc measur...Charge-changing cross section(σcc)measurements via the transmission method have recently seen significant progress with the aim of determining the charge radii of exotic nuclei.In this work,we report a newσcc measurement of 304(9)MeV/nucleon^(28)Si on carbon at the second Radioactive Ion Beam Line in Lanzhou(RIBLL2)and describe the data analysis procedure in detail.This procedure is essential for evaluating the systematic uncertainty in the transmission method.The determinedσcc of 1125(11)mb is found to be consistent with the existing data at similar energies.The present work will serve as a reference forσcc determinations at RIBLL2.展开更多
基金Supported by the National Natural Science Foundation of China(U1832211,11961141004,11922501,11475014,11905260)the Western Light Project of Chinese Academy of Sciencesthe Natural Science Foundation of Anhui Province,China(2008085MA17)。
文摘Charge-changing cross section(σcc)measurements via the transmission method have recently seen significant progress with the aim of determining the charge radii of exotic nuclei.In this work,we report a newσcc measurement of 304(9)MeV/nucleon^(28)Si on carbon at the second Radioactive Ion Beam Line in Lanzhou(RIBLL2)and describe the data analysis procedure in detail.This procedure is essential for evaluating the systematic uncertainty in the transmission method.The determinedσcc of 1125(11)mb is found to be consistent with the existing data at similar energies.The present work will serve as a reference forσcc determinations at RIBLL2.