期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Thermal and ignition properties of hexanitrostilbene(HNS) microspheres prepared by droplet microfluidics 被引量:1
1
作者 Rui-shan Han Fei-peng Lu +6 位作者 Fang Zhang Yan-lan Wang Mi Zhou Guo-sheng Qin Jian-hua Chen Hai-fu Wang En-yi Chu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期166-173,共8页
HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were... HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were prepared using droplet microfluidics, and the particle size, morphology, specific surface area, thermal performance, and ignition threshold of the HNS microspheres were characterized and tested. The results shown that the prepared HNS microspheres have high sphericity, with an average particle size of 20.52 μm(coefficient of variation less than 0.2), and a specific surface area of 21.62 m^(2)/g(6.87 m^(2)/g higher than the raw material). Without changing the crystal structure and thermal stability of HNS-IV, this method significantly enhances the sensitivity of HNS-IV to short pulses and reduces the ignition threshold of the slapper detonator to below 1000 V. This will contribute to the miniaturization and low cost of EFI. 展开更多
关键词 MICROFLUIDICS HNS microspheres Thermal stability ignition threshold
下载PDF
Moisture content thresholds for ignition and rate of fire spread for various dead fuels in northeast forest ecosystems of China 被引量:4
2
作者 Maombi Mbusa Masinda Long Sun +1 位作者 Guangyu Wang Tongxin Hu 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第3期1147-1155,共9页
Fuel moisture content is one of the important factors that determine ignition probability and fire behaviour in forest ecosystems.In this study,ignition and fire spread moisture content thresholds of 40 dead fuel were... Fuel moisture content is one of the important factors that determine ignition probability and fire behaviour in forest ecosystems.In this study,ignition and fire spread moisture content thresholds of 40 dead fuel were performed in laboratory experiments,with a focus on the source of ignition and wind speed.Variability in fuel moisture content at time of ignition and during fire spread was observed for different fuels.Matches were more efficient to result in ignition and spread fire with high values of fuel moisture content compared to the use of cigarette butts.Some fuels did not ignite at 15%moisture content,whereas others ignited at 40%moisture content and fire spread at 38%moisture content in the case of matches,or ignited at 27%moisture content and spread fire at 25%moisture content using cigarette butts.A two-way ANOVA showed that both the source of ignition and the wind speed affected ignition and fire spread threshold significantly,but there was no interaction between these factors.The relationship between ignition and fire spread was strong,with R2=98%for cigarette butts,and 92%for matches.Further information is needed,especially on the density of fuels,fuel proportion(case of mixed fuels),fuel age,and fuel combustibility. 展开更多
关键词 Dead fuel ignition source Wind speed ignition moisture threshold Propagation moisture threshold
下载PDF
Improving the energy release characteristics of PTFE/Al by doping magnesium hydride 被引量:5
3
作者 Jia-xiang Wu Qiang Liu +6 位作者 Bin Feng Qin Yin Yu-chun Li Shuang-zhang Wu Zhong-shen Yu Jun-yi Huang Xin-xin Ren 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期219-228,共10页
Magnesium hydride(MgH2)was doped into PTFE/Al to improve the energy release characteristics of the material system and strive for better application in military engineering.Five types of PTFE/Al/MgH2 reactive material... Magnesium hydride(MgH2)was doped into PTFE/Al to improve the energy release characteristics of the material system and strive for better application in military engineering.Five types of PTFE/Al/MgH2 reactive materials with different MgH2 content were prepared by molding sintering method.The dynamic mechanical properties of the materials were studied by performing split-Hopkinson pressure bar(SHPB)tests and scanning electron microscope characterizations.The thermal behavior,reaction energy,reaction process and reaction mechanism were systematically investigated by conducting thermogravimetry-differential scanning calorimetry tests,oxygen bomb calorimeter measurements,Xray diffraction and SHPB tests.The results show that MgH2 particles less than 10%content contribute to heightening the dynamic mechanical properties of PTFE/Al system.The product Mg generated by decomposition of MgH2 can not only react with gas phase C2F4þbut also undergo a Grignard-type reaction with condensed PTFE.The reaction energy and ignition threshold of PTFE/Al/MgH2 reactive materials enhance monotonously as MgH2 content rose.With the increase of MgH2 content from 0%to 20%,the reaction time is prolonged as well as the reaction intensity is enhanced dramatically arising from the massive water vapour produced by the reaction between O2 and H2.The gaseous products generated can form a high pressure shortly after the reaction,which helps to elevate the damage effect of the PTFE/Al system. 展开更多
关键词 PTFE/Al/MgH_(2) Mechanical properties Thermal behavior Reaction energy ignition threshold
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部