The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the la...The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.展开更多
In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However...In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.展开更多
Land use/cover change(LUCC)plays a key role in altering surface hydrology and water balance,finally affect-ing the security and availability of water resources.However,mechanisms underlying LUCC determination of water...Land use/cover change(LUCC)plays a key role in altering surface hydrology and water balance,finally affect-ing the security and availability of water resources.However,mechanisms underlying LUCC determination of water-balance processes at the basin scale remain unclear.In this study,the Soil and Water Assessment Tool(SWAT)model and partial least squares regression were used to detect the effects of LUCC on hydrology and water components in the Zuli River Basin(ZRB),a typical watershed of the Yellow River Basin.In general,three recommended coefficients(R^(2)and E ns greater than 0.5,and P bias less than 20%)indicated that the output results of the SWAT model were reliable and that the model was effective for the ZRB.Then,several key findings were obtained.First,LUCC in the ZRB was characterized by a significant increase in forest(21.61%)and settlement(23.52%)and a slight reduction in cropland(-1.35%),resulting in a 4.93%increase in evapotranspiration and a clear decline in surface runoffand water yield by 15.68%and 2.95%at the whole basin scale,respectively.Second,at the sub-basin scale,surface runoffand water yield increased by 14.26%-36.15%and 5.13%-15.55%,respectively,mainly due to settlement increases.Last,partial least squares regression indicated that urbanization was the most significant contributor to runoffchange,and evapotranspiration change was mainly driven by forest expansion.These conclusions are significant for understanding the relationship between LUCC and water balance,which can provide meaningful information for managing water resources and the long-term sustainability of such watersheds.展开更多
This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques...This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques. Landsat images are used to estimate the LULC changes and the MODIS data for LST.The Maximum Likelihood Classification(MLC) method is used, and the LULC is classified into six categories: Agriculture Land, Barren Land, Salt Pan, Sandy Beach, Settlement, and Waterbody. Within the two decades of the present change detection study, upheave in the Settlement area of 49.89% is noticed, and the Agriculture Land is exploited by 20.09%. Salt Pan emits a high LST of 31.57°C, and the Waterbodies are noticed with a low LST of 28.9°C. However, the overall rate of LST decreased by 0.56°C during this period. This study will help policymakers make appropriate planning and management to overcome the impact of LULC and LST in the forthcoming years.展开更多
Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a n...Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction.展开更多
The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating condi...The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating conditions,and limited measured signals.Although data-driven methods are perceived as a promising solution,they ignore intrinsic battery physics,leading to compromised accuracy,low efficiency,and low interpretability.In response,this study integrates domain knowledge into deep learning to enhance the RUL prediction performance.We demonstrate accurate RUL prediction using only a single charging curve.First,a generalisable physics-based model is developed to extract ageing-correlated parameters that can describe and explain battery degradation from battery charging data.The parameters inform a deep neural network(DNN)to predict RUL with high accuracy and efficiency.The trained model is validated under 3 types of batteries working under 7 conditions,considering fully charged and partially charged cases.Using data from one cycle only,the proposed method achieves a root mean squared error(RMSE)of 11.42 cycles and a mean absolute relative error(MARE)of 3.19%on average,which are over45%and 44%lower compared to the two state-of-the-art data-driven methods,respectively.Besides its accuracy,the proposed method also outperforms existing methods in terms of efficiency,input burden,and robustness.The inherent relationship between the model parameters and the battery degradation mechanism is further revealed,substantiating the intrinsic superiority of the proposed method.展开更多
Although the use of heterosis in maize breeding has increased crop productivity,the genetic causes underlying heterosis for nitrogen(N) use efficiency(NUE) have been insufficiently investigated.In this study,five N-re...Although the use of heterosis in maize breeding has increased crop productivity,the genetic causes underlying heterosis for nitrogen(N) use efficiency(NUE) have been insufficiently investigated.In this study,five N-response traits and five low-N-tolerance traits were investigated using two inbred line populations(ILs) consisting of recombinant inbred lines(RIL) and advanced backcross(ABL) populations,derived from crossing Ye478 with Wu312.Both populations were crossed with P178 to construct two testcross populations.IL populations,their testcross populations,and the midparent heterosis(MPH)for NUE were investigated.Kernel weight,kernel number,and kernel number per row were sensitive to N level and ILs showed higher N response than did the testcross populations.Based on a highdensity linkage map,138 quantitative trait loci(QTL) were mapped,each explaining 5.6%–38.8% of genetic variation.There were 52,34 and 52 QTL for IL populations,MPH,and testcross populations,respectively.The finding that 7.6% of QTL were common to the ILs and their testcross populations and that 11.7% were common to the MPH and testcross population indicated that heterosis for NUE traits was regulated by non-additive and non-dominant loci.A QTL on chromosome 5 explained 27% of genetic variation in all of the traits and Gln1-3 was identified as a candidate gene for this QTL.Genome-wide prediction of NUE traits in the testcross populations showed 14%–51% accuracy.Our results may be useful for clarifying the genetic basis of heterosis for NUE traits and the candidate gene may be used for genetic improvement of maize NUE.展开更多
Maintenance is an important technical measure to maintain and restore the performance status of equipment and ensure the safety of the production process in industrial production,and is an indispensable part of predic...Maintenance is an important technical measure to maintain and restore the performance status of equipment and ensure the safety of the production process in industrial production,and is an indispensable part of prediction and health management.However,most of the existing remaining useful life(RUL)prediction methods assume that there is no maintenance or only perfect maintenance during the whole life cycle;thus,the predicted RUL value of the system is obviously lower than its actual operating value.The complex environment of the system further increases the difficulty of maintenance,and its maintenance nodes and maintenance degree are limited by the construction period and working conditions,which increases the difficulty of RUL prediction.An RUL prediction method for a multi-omponent system based on the Wiener process considering maintenance is proposed.The performance degradation model of components is established by a dynamic Bayesian network as the initial model,which solves the uncertainty of insufficient data problems.Based on the experience of experts,the degree of degradation is divided according to Poisson process simulation random failure,and different maintenance strategies are used to estimate a variety of condition maintenance factors.An example of a subsea tree system is given to verify the effectiveness of the proposed method.展开更多
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m...Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.展开更多
Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-R...Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets.展开更多
Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China t...Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China to evaluate the spatiotemporal evolution of CLUE from 2000 to 2020 and identified the influencing factors of CLUE by using a panel Tobit model.In addition,given the undesirable outputs of agricultural production,we incorporated carbon emissions and nonpoint source pollution into the global benchmark-undesirable output-super efficiency-slacks-based measure(GB-US-SBM)model,which combines global benchmark technology,undesirable output,super efficiency,and slacks-based measure.The results indicated that there was an upward trend in CLUE in China from 2000 to 2020,with an increase rate of 2.62%.The temporal evolution of CLUE in China could be classified into three distinct stages:a period of fluctuating decrease(2000-2007),a phase of gradual increase(2008-2014),and a period of rapid growth(2015-2020).The major grain-producing areas(MPAs)had a lower CLUE than their counterparts,namely,non-major grain-production areas(non-MPAs).The spatial agglomeration effect followed a northeast-southwest strip distribution;and the movement path of barycentre revealed a"P"shape,with Luoyang City,Henan Province,as the centre.In terms of influencing factors of CLUE,investment in science and technology played the most vital role in improving CLUE,while irrigation index had the most negative effect.It should be noted that these two influencing factors had different impacts on MPAs and non-MPAs.Therefore,relevant departments should formulate policies to enhance the level of science and technology,improve irrigation condition,and promote sustainable utilization of cultivated land.展开更多
Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and ...Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.展开更多
The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holisti...The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.展开更多
Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of...Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.展开更多
Land use and cover change(LUCC)is important for the provision of ecosystem services.An increasing number of recent studies link LUCC processes to ecosystem services and human well-being at different scales recently.Ho...Land use and cover change(LUCC)is important for the provision of ecosystem services.An increasing number of recent studies link LUCC processes to ecosystem services and human well-being at different scales recently.However,the dynamic of land use and its drivers receive insufficient attention within ecological function areas,particularly in quantifying the dynamic roles of climate change and human activities on land use based on a long time series.This study utilizes geospatial analysis and geographical detectors to examine the temporal dynamics of land use patterns and their underlying drivers in the Hedong Region of the Gansu Province from 1990 to 2020.Results indicated that grassland,cropland,and forestland collectively accounted for approximately 99% of the total land area.Cropland initially increased and then decreased after 2000,while grassland decreased with fluctuations.In contrast,forestland and construction land were continuously expanded,with net growth areas of 6235.2 and 455.9 km^(2),respectively.From 1990 to 2020,cropland was converted to grassland,and both of them were converted to forestland as a whole.The expansion of construction land primarily originated from cropland.From 2000 to 2005,land use experienced intensified temporal dynamics and a shift of relatively active zones from the central to the southeastern region.Grain yield,economic factors,and precipitation were the major factors accounting for most land use changes.Climatic impacts on land use changes were stronger before 1995,succeeded by the impact of animal husbandry during 1995-2000,followed by the impacts of grain production and gross domestic product(GDP)after 2000.Moreover,agricultural and pastoral activities,coupled with climate change,exhibited stronger enhancement effects after 2000 through their interaction with population and economic factors.These patterns closely correlated with ecological restoration projects in China since 1999.This study implies the importance of synergy between human activity and climate change for optimizing land use via ecological patterns in the ecological function area.展开更多
As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem ...As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources.展开更多
The emergence of various technologies such as terahertz communications,Reconfigurable Intelligent Surfaces(RIS),and AI-powered communication services will burden network operators with rising infrastructure costs.Rece...The emergence of various technologies such as terahertz communications,Reconfigurable Intelligent Surfaces(RIS),and AI-powered communication services will burden network operators with rising infrastructure costs.Recently,the Open Radio Access Network(O-RAN)has been introduced as a solution for growing financial and operational burdens in Beyond 5G(B5G)and 6G networks.O-RAN promotes openness and intelligence to overcome the limitations of traditional RANs.By disaggregating conventional Base Band Units(BBUs)into O-RAN Distributed Units(O-DU)and O-RAN Centralized Units(O-CU),O-RAN offers greater flexibility for upgrades and network automation.However,this openness introduces new security challenges compared to traditional RANs.Many existing studies overlook these security requirements of the O-RAN networks.To gain deeper insights into the O-RAN system and security,this paper first provides an overview of the general O-RAN architecture and its diverse use cases relevant to B5G and 6G applications.We then delve into specifications of O-RAN security threats and requirements,aiming to mitigate security vulnerabilities effectively.By providing a comprehensive understanding of O-RAN architecture,use cases,and security considerations,thisworkserves as a valuable resource for future research in O-RAN and its security.展开更多
Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,for...Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.展开更多
Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions,leading to potential conflicts among natural and human-related issues as well as among stakeh...Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions,leading to potential conflicts among natural and human-related issues as well as among stakeholders.This study introduced economic standards for farmers.A hybrid approach(CA-ABM)of cellular automaton(CA)and an agent-based model(ABM)was developed to effectively deal with social and land-use synergic issues to examine human–environment interactions and projections of land-use conversions for a humid basin in south China.Natural attributes and socioeconomic data were used to analyze land use/land cover and its drivers of change.The major modules of the CA-ABM are initialization,migration,assets,land suitability,and land-use change decisions.Empirical estimates of the factors influencing the urban land-use conversion probability were captured using parameters based on a spatial logistic regression(SLR)model.Simultaneously,multicriteria evaluation(MCE)and Markov models were introduced to obtain empirical estimates of the factors affecting the probability of ecological land conversion.An agent-based CA-SLR-MCE-Markov(ABCSMM)land-use conversion model was proposed to explore the impacts of policies on land-use conversion.This model can reproduce observed land-use patterns and provide links for forest transition and urban expansion to land-use decisions and ecosystem services.The results demonstrated land-use simulations under multi-policy scenarios,revealing the usefulness of the model for normative research on land-use management.展开更多
AIM:To determine the smartphone use patterns and effects of smartphone use on accommodation and convergence system of the eyes among Malaysian teenagers.METHODS:A total of 62 participants aged between 13 and 17y were ...AIM:To determine the smartphone use patterns and effects of smartphone use on accommodation and convergence system of the eyes among Malaysian teenagers.METHODS:A total of 62 participants aged between 13 and 17y were involved.A self-administered questionnaires containing 12 items was used to evaluate the smartphone usage patterns.This was followed by an eye examination,involving a battery of accommodation and convergence assessments before and after the smartphone use.The data analysis comprised descriptive statistics,paired t-test,and correlation coefficients.RESULTS:The use of smartphones is at a high level and at an optimal distance daily,with more than 6h a day watching video films,games,and completing school projects.Majority of the participants not reported eye strain factors and eye prescription changes with the use of digital devices.The use of a smartphone continuously for 30min was found to significantly decrease amplitude of accommodation,accommodative facility,and positive relative accommodation(P<0.001).Meanwhile,the lag of accommodation parameters and negative relative accommodation increased with the use of smartphones significantly(P<0.001).The near point of convergence(NPC)and distance and near negative fusional vergence decreased significantly(P<0.001).The NPC parameter was found to have a weak negative association with the frequency of smartphone use(R=-0.276,P<0.05).CONCLUSION:Frequent and continuous use of smartphones have increased visual stress and resulted in weakness of accommodation and vergence functions.Therefore,frequent break is mandatory when using a smartphone and appropriate visual hygiene,the 20-20-20 rule(every 20min,view something 20 feet away for 20s)are required during smartphone use to maintain visual function.展开更多
文摘The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.
基金supported by the National Science Fund for Distinguished Young Scholars of China(52025056)Fundamental Research Funds for the Central Universities(xzy012022062)。
文摘In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.
基金This research was jointly supported by the National Natural Science Foundation of China(Grants No.U21A2011,41991233 and 41971129)the National Key Research and Development Program of China(Grant No.SQ2022YFF1300053)the Distinguished Membership Project of the Youth Innovation Promotion Association of Chinese Academy of Sci-ences(Grant No.Y201812).
文摘Land use/cover change(LUCC)plays a key role in altering surface hydrology and water balance,finally affect-ing the security and availability of water resources.However,mechanisms underlying LUCC determination of water-balance processes at the basin scale remain unclear.In this study,the Soil and Water Assessment Tool(SWAT)model and partial least squares regression were used to detect the effects of LUCC on hydrology and water components in the Zuli River Basin(ZRB),a typical watershed of the Yellow River Basin.In general,three recommended coefficients(R^(2)and E ns greater than 0.5,and P bias less than 20%)indicated that the output results of the SWAT model were reliable and that the model was effective for the ZRB.Then,several key findings were obtained.First,LUCC in the ZRB was characterized by a significant increase in forest(21.61%)and settlement(23.52%)and a slight reduction in cropland(-1.35%),resulting in a 4.93%increase in evapotranspiration and a clear decline in surface runoffand water yield by 15.68%and 2.95%at the whole basin scale,respectively.Second,at the sub-basin scale,surface runoffand water yield increased by 14.26%-36.15%and 5.13%-15.55%,respectively,mainly due to settlement increases.Last,partial least squares regression indicated that urbanization was the most significant contributor to runoffchange,and evapotranspiration change was mainly driven by forest expansion.These conclusions are significant for understanding the relationship between LUCC and water balance,which can provide meaningful information for managing water resources and the long-term sustainability of such watersheds.
文摘This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques. Landsat images are used to estimate the LULC changes and the MODIS data for LST.The Maximum Likelihood Classification(MLC) method is used, and the LULC is classified into six categories: Agriculture Land, Barren Land, Salt Pan, Sandy Beach, Settlement, and Waterbody. Within the two decades of the present change detection study, upheave in the Settlement area of 49.89% is noticed, and the Agriculture Land is exploited by 20.09%. Salt Pan emits a high LST of 31.57°C, and the Waterbodies are noticed with a low LST of 28.9°C. However, the overall rate of LST decreased by 0.56°C during this period. This study will help policymakers make appropriate planning and management to overcome the impact of LULC and LST in the forthcoming years.
基金supported by National Natural Science Foundation of China (61703410,61873175,62073336,61873273,61773386,61922089)。
文摘Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction.
基金the financial support from the National Natural Science Foundation of China(52207229)the financial support from the China Scholarship Council(202207550010)。
文摘The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating conditions,and limited measured signals.Although data-driven methods are perceived as a promising solution,they ignore intrinsic battery physics,leading to compromised accuracy,low efficiency,and low interpretability.In response,this study integrates domain knowledge into deep learning to enhance the RUL prediction performance.We demonstrate accurate RUL prediction using only a single charging curve.First,a generalisable physics-based model is developed to extract ageing-correlated parameters that can describe and explain battery degradation from battery charging data.The parameters inform a deep neural network(DNN)to predict RUL with high accuracy and efficiency.The trained model is validated under 3 types of batteries working under 7 conditions,considering fully charged and partially charged cases.Using data from one cycle only,the proposed method achieves a root mean squared error(RMSE)of 11.42 cycles and a mean absolute relative error(MARE)of 3.19%on average,which are over45%and 44%lower compared to the two state-of-the-art data-driven methods,respectively.Besides its accuracy,the proposed method also outperforms existing methods in terms of efficiency,input burden,and robustness.The inherent relationship between the model parameters and the battery degradation mechanism is further revealed,substantiating the intrinsic superiority of the proposed method.
基金financially supported by the National Key Research and Development Program of China (2021YFD1200700)the National Natural Science Foundation of China (31972485,31971948)the Hainan Provincial Science and Technology Plan Sanya Yazhou Bay Science and Technology City Joint Project(320LH011)。
文摘Although the use of heterosis in maize breeding has increased crop productivity,the genetic causes underlying heterosis for nitrogen(N) use efficiency(NUE) have been insufficiently investigated.In this study,five N-response traits and five low-N-tolerance traits were investigated using two inbred line populations(ILs) consisting of recombinant inbred lines(RIL) and advanced backcross(ABL) populations,derived from crossing Ye478 with Wu312.Both populations were crossed with P178 to construct two testcross populations.IL populations,their testcross populations,and the midparent heterosis(MPH)for NUE were investigated.Kernel weight,kernel number,and kernel number per row were sensitive to N level and ILs showed higher N response than did the testcross populations.Based on a highdensity linkage map,138 quantitative trait loci(QTL) were mapped,each explaining 5.6%–38.8% of genetic variation.There were 52,34 and 52 QTL for IL populations,MPH,and testcross populations,respectively.The finding that 7.6% of QTL were common to the ILs and their testcross populations and that 11.7% were common to the MPH and testcross population indicated that heterosis for NUE traits was regulated by non-additive and non-dominant loci.A QTL on chromosome 5 explained 27% of genetic variation in all of the traits and Gln1-3 was identified as a candidate gene for this QTL.Genome-wide prediction of NUE traits in the testcross populations showed 14%–51% accuracy.Our results may be useful for clarifying the genetic basis of heterosis for NUE traits and the candidate gene may be used for genetic improvement of maize NUE.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFC3004802)the National Natural Science Foundation of China(Grant Nos.52171287,52325107)+3 种基金High Tech Ship Research Project of Ministry of Industry and Information Technology(Grant Nos.2023GXB01-05-004-03,GXBZH2022-293)the Science Foundation for Distinguished Young Scholars of Shandong Province(Grant No.ZR2022JQ25)the Taishan Scholars Project(Grant No.tsqn201909063)the sub project of the major special project of CNOOC Development Technology,“Research on the Integrated Technology of Intrinsic Safety of Offshore Oil Facilities”(Phase I),“Research on Dynamic Quantitative Analysis and Control Technology of Risks in Offshore Production Equipment”(Grant No.HFKJ-2D2X-AQ-2021-03)。
文摘Maintenance is an important technical measure to maintain and restore the performance status of equipment and ensure the safety of the production process in industrial production,and is an indispensable part of prediction and health management.However,most of the existing remaining useful life(RUL)prediction methods assume that there is no maintenance or only perfect maintenance during the whole life cycle;thus,the predicted RUL value of the system is obviously lower than its actual operating value.The complex environment of the system further increases the difficulty of maintenance,and its maintenance nodes and maintenance degree are limited by the construction period and working conditions,which increases the difficulty of RUL prediction.An RUL prediction method for a multi-omponent system based on the Wiener process considering maintenance is proposed.The performance degradation model of components is established by a dynamic Bayesian network as the initial model,which solves the uncertainty of insufficient data problems.Based on the experience of experts,the degree of degradation is divided according to Poisson process simulation random failure,and different maintenance strategies are used to estimate a variety of condition maintenance factors.An example of a subsea tree system is given to verify the effectiveness of the proposed method.
基金Key Research and Development Program of Xinjiang(2022B02001-1)National Natural Science Foundation of China(42105172,41975146).
文摘Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.
基金Under the auspices of the National Natural Science Foundation of China(No.41971219,41571168)Natural Science Foundation of Hunan Province(No.2020JJ4372)Philosophy and Social Science Fund Project of Hunan Province(No.18ZDB015)。
文摘Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets.
基金supported by the National Natural Science Foundation of China(72373117)the Chinese Universities Scientific Fund(Z1010422003)+1 种基金the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education(22JJD790052)the Qinchuangyuan Project of Shaanxi Province(QCYRCXM-2022-145).
文摘Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China to evaluate the spatiotemporal evolution of CLUE from 2000 to 2020 and identified the influencing factors of CLUE by using a panel Tobit model.In addition,given the undesirable outputs of agricultural production,we incorporated carbon emissions and nonpoint source pollution into the global benchmark-undesirable output-super efficiency-slacks-based measure(GB-US-SBM)model,which combines global benchmark technology,undesirable output,super efficiency,and slacks-based measure.The results indicated that there was an upward trend in CLUE in China from 2000 to 2020,with an increase rate of 2.62%.The temporal evolution of CLUE in China could be classified into three distinct stages:a period of fluctuating decrease(2000-2007),a phase of gradual increase(2008-2014),and a period of rapid growth(2015-2020).The major grain-producing areas(MPAs)had a lower CLUE than their counterparts,namely,non-major grain-production areas(non-MPAs).The spatial agglomeration effect followed a northeast-southwest strip distribution;and the movement path of barycentre revealed a"P"shape,with Luoyang City,Henan Province,as the centre.In terms of influencing factors of CLUE,investment in science and technology played the most vital role in improving CLUE,while irrigation index had the most negative effect.It should be noted that these two influencing factors had different impacts on MPAs and non-MPAs.Therefore,relevant departments should formulate policies to enhance the level of science and technology,improve irrigation condition,and promote sustainable utilization of cultivated land.
基金supported by the Central Government to Guide Local Technological Development(23ZYQH0298)the Science and Technology Project of Gansu Province(20JR10RA656,22JR5RA416)the Science and Technology Project of Wuwei City(WW2202YFS006).
文摘Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.
基金supported by the Third Xinjiang Scientific Expedition Program (2022xjkk1100)the Tianchi Talent Project
文摘The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.
基金supported by the Key R&D Plan of Hubei Province,China(2022BBA002)the Carbon Account Accounting and Carbon Reduction and Sequestration Technology Research of Quzhou City of China(2022-31).
文摘Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.
基金funded by the National Natural Science Foundation of China(U20A2098,41701219)the National Key Research and Development Program of China(2019YFC0507801)。
文摘Land use and cover change(LUCC)is important for the provision of ecosystem services.An increasing number of recent studies link LUCC processes to ecosystem services and human well-being at different scales recently.However,the dynamic of land use and its drivers receive insufficient attention within ecological function areas,particularly in quantifying the dynamic roles of climate change and human activities on land use based on a long time series.This study utilizes geospatial analysis and geographical detectors to examine the temporal dynamics of land use patterns and their underlying drivers in the Hedong Region of the Gansu Province from 1990 to 2020.Results indicated that grassland,cropland,and forestland collectively accounted for approximately 99% of the total land area.Cropland initially increased and then decreased after 2000,while grassland decreased with fluctuations.In contrast,forestland and construction land were continuously expanded,with net growth areas of 6235.2 and 455.9 km^(2),respectively.From 1990 to 2020,cropland was converted to grassland,and both of them were converted to forestland as a whole.The expansion of construction land primarily originated from cropland.From 2000 to 2005,land use experienced intensified temporal dynamics and a shift of relatively active zones from the central to the southeastern region.Grain yield,economic factors,and precipitation were the major factors accounting for most land use changes.Climatic impacts on land use changes were stronger before 1995,succeeded by the impact of animal husbandry during 1995-2000,followed by the impacts of grain production and gross domestic product(GDP)after 2000.Moreover,agricultural and pastoral activities,coupled with climate change,exhibited stronger enhancement effects after 2000 through their interaction with population and economic factors.These patterns closely correlated with ecological restoration projects in China since 1999.This study implies the importance of synergy between human activity and climate change for optimizing land use via ecological patterns in the ecological function area.
基金Under the auspices of Humanities and Social Sciences Foundation of Soochow University(No.22XM2008)National Social Science Foundation of China(No.23BGL168)。
文摘As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources.
基金supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology).
文摘The emergence of various technologies such as terahertz communications,Reconfigurable Intelligent Surfaces(RIS),and AI-powered communication services will burden network operators with rising infrastructure costs.Recently,the Open Radio Access Network(O-RAN)has been introduced as a solution for growing financial and operational burdens in Beyond 5G(B5G)and 6G networks.O-RAN promotes openness and intelligence to overcome the limitations of traditional RANs.By disaggregating conventional Base Band Units(BBUs)into O-RAN Distributed Units(O-DU)and O-RAN Centralized Units(O-CU),O-RAN offers greater flexibility for upgrades and network automation.However,this openness introduces new security challenges compared to traditional RANs.Many existing studies overlook these security requirements of the O-RAN networks.To gain deeper insights into the O-RAN system and security,this paper first provides an overview of the general O-RAN architecture and its diverse use cases relevant to B5G and 6G applications.We then delve into specifications of O-RAN security threats and requirements,aiming to mitigate security vulnerabilities effectively.By providing a comprehensive understanding of O-RAN architecture,use cases,and security considerations,thisworkserves as a valuable resource for future research in O-RAN and its security.
基金supported by the National Natural Science Foundation of China(U22A20501)the National Key Research and Development Plan of China(2022YFD1500601)+4 种基金the National Science and Technology Fundamental Resources Investigation Program of China(2018FY100304)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28090200)the Liaoning Province Applied Basic Research Plan Program,China(2022JH2/101300184)the Shenyang Science and Technology Plan Program,China(21-109-305)the Liaoning Outstanding Innovation Team,China(XLYC2008015)。
文摘Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.
基金supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2021ZT090543)the National Natural Science Foundation of China(U20A20117)the Key-Area Research and Development Program of Guangdong Province(2020B1111380003).
文摘Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions,leading to potential conflicts among natural and human-related issues as well as among stakeholders.This study introduced economic standards for farmers.A hybrid approach(CA-ABM)of cellular automaton(CA)and an agent-based model(ABM)was developed to effectively deal with social and land-use synergic issues to examine human–environment interactions and projections of land-use conversions for a humid basin in south China.Natural attributes and socioeconomic data were used to analyze land use/land cover and its drivers of change.The major modules of the CA-ABM are initialization,migration,assets,land suitability,and land-use change decisions.Empirical estimates of the factors influencing the urban land-use conversion probability were captured using parameters based on a spatial logistic regression(SLR)model.Simultaneously,multicriteria evaluation(MCE)and Markov models were introduced to obtain empirical estimates of the factors affecting the probability of ecological land conversion.An agent-based CA-SLR-MCE-Markov(ABCSMM)land-use conversion model was proposed to explore the impacts of policies on land-use conversion.This model can reproduce observed land-use patterns and provide links for forest transition and urban expansion to land-use decisions and ecosystem services.The results demonstrated land-use simulations under multi-policy scenarios,revealing the usefulness of the model for normative research on land-use management.
文摘AIM:To determine the smartphone use patterns and effects of smartphone use on accommodation and convergence system of the eyes among Malaysian teenagers.METHODS:A total of 62 participants aged between 13 and 17y were involved.A self-administered questionnaires containing 12 items was used to evaluate the smartphone usage patterns.This was followed by an eye examination,involving a battery of accommodation and convergence assessments before and after the smartphone use.The data analysis comprised descriptive statistics,paired t-test,and correlation coefficients.RESULTS:The use of smartphones is at a high level and at an optimal distance daily,with more than 6h a day watching video films,games,and completing school projects.Majority of the participants not reported eye strain factors and eye prescription changes with the use of digital devices.The use of a smartphone continuously for 30min was found to significantly decrease amplitude of accommodation,accommodative facility,and positive relative accommodation(P<0.001).Meanwhile,the lag of accommodation parameters and negative relative accommodation increased with the use of smartphones significantly(P<0.001).The near point of convergence(NPC)and distance and near negative fusional vergence decreased significantly(P<0.001).The NPC parameter was found to have a weak negative association with the frequency of smartphone use(R=-0.276,P<0.05).CONCLUSION:Frequent and continuous use of smartphones have increased visual stress and resulted in weakness of accommodation and vergence functions.Therefore,frequent break is mandatory when using a smartphone and appropriate visual hygiene,the 20-20-20 rule(every 20min,view something 20 feet away for 20s)are required during smartphone use to maintain visual function.