Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data...Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data models are studied,and the characteristics of building information modeling standards(IFC),city geographic modeling language(CityGML),indoor modeling language(IndoorGML),and other models are compared and analyzed.CityGML and IndoorGML models face challenges in satisfying diverse application scenarios and requirements due to limitations in their expression capabilities.It is proposed to combine the semantic information of the model objects to effectively partition and organize the indoor and outdoor spatial 3D model data and to construct the indoor and outdoor data organization mechanism of“chunk-layer-subobject-entrances-area-detail object.”This method is verified by proposing a 3D data organization method for indoor and outdoor space and constructing a 3D visualization system based on it.展开更多
To establish the model of indoor air pollution forecast for decoration. Methods The model was based on the balance model for diffusing mass. Results The data between testing concentration and estimating concentration ...To establish the model of indoor air pollution forecast for decoration. Methods The model was based on the balance model for diffusing mass. Results The data between testing concentration and estimating concentration were compared. The maximal error was less than 30% and average error was 14.6%. Conclusion The model can easily predict whether the pollution for decoration exceeds the standard and how long the room is decorated.展开更多
A novel statistical angle-of-arrival (AOA) model for indoor geolocation applications is presented. The modeling approach focuses on the arrivals of the multipath components with respect to the line-of-sight (LOS) path...A novel statistical angle-of-arrival (AOA) model for indoor geolocation applications is presented. The modeling approach focuses on the arrivals of the multipath components with respect to the line-of-sight (LOS) path which is an important component especially when indoor geolocation applications are considered. The model is particularly important for indoor applications where AOA information could be utilized for tracking indirect paths to aid in precise ranging in harsh and dense multipath environments where LOS path might be blocked due to obstructions. The results have been obtained by a measurement calibrated ray-tracing (RT) tool.展开更多
This paper proposes modifications to the tradional Ceiling Bounce Model and uses it to characterize diffuse indoor optical wireless channel by analyzing the effect of transceiver position on signal propagation propert...This paper proposes modifications to the tradional Ceiling Bounce Model and uses it to characterize diffuse indoor optical wireless channel by analyzing the effect of transceiver position on signal propagation properties. The modified approach uses a combination of the tradional ceiling bounce method and a statistical approach. The effects of different transmitter-receiver separations and height of the ceiling on path loss and delay spread are studied in detail.展开更多
When there are bigger obstacles in the indoor environment such as elevator, the radio waves basically can not penetrate it. The contribution of received signal strength by transmission and reflection will be greatly r...When there are bigger obstacles in the indoor environment such as elevator, the radio waves basically can not penetrate it. The contribution of received signal strength by transmission and reflection will be greatly reduced, and most of the time, the radio waves will reach the user by bypass diffraction. Therefore, the traditional path loss model is no longer applicable, and the improved model should be proposed. In this paper, we firstly proposed an indoor radio propagation model based on dominant path in which the received signal strength has nothing to do with the direct distance between user and access point, but is related to the length of dominant path. Then on the basis of dominant path model, the NLOS influence is considered in order to further improve the accuracy of dominant path model. Experimental results demonstrated that the proposed dominant path model can improve the accuracy of traditional path loss model remarkably.展开更多
文摘Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data models are studied,and the characteristics of building information modeling standards(IFC),city geographic modeling language(CityGML),indoor modeling language(IndoorGML),and other models are compared and analyzed.CityGML and IndoorGML models face challenges in satisfying diverse application scenarios and requirements due to limitations in their expression capabilities.It is proposed to combine the semantic information of the model objects to effectively partition and organize the indoor and outdoor spatial 3D model data and to construct the indoor and outdoor data organization mechanism of“chunk-layer-subobject-entrances-area-detail object.”This method is verified by proposing a 3D data organization method for indoor and outdoor space and constructing a 3D visualization system based on it.
基金This study was support by Tenth-five Program of China (2001BA70B02)
文摘To establish the model of indoor air pollution forecast for decoration. Methods The model was based on the balance model for diffusing mass. Results The data between testing concentration and estimating concentration were compared. The maximal error was less than 30% and average error was 14.6%. Conclusion The model can easily predict whether the pollution for decoration exceeds the standard and how long the room is decorated.
文摘A novel statistical angle-of-arrival (AOA) model for indoor geolocation applications is presented. The modeling approach focuses on the arrivals of the multipath components with respect to the line-of-sight (LOS) path which is an important component especially when indoor geolocation applications are considered. The model is particularly important for indoor applications where AOA information could be utilized for tracking indirect paths to aid in precise ranging in harsh and dense multipath environments where LOS path might be blocked due to obstructions. The results have been obtained by a measurement calibrated ray-tracing (RT) tool.
文摘This paper proposes modifications to the tradional Ceiling Bounce Model and uses it to characterize diffuse indoor optical wireless channel by analyzing the effect of transceiver position on signal propagation properties. The modified approach uses a combination of the tradional ceiling bounce method and a statistical approach. The effects of different transmitter-receiver separations and height of the ceiling on path loss and delay spread are studied in detail.
文摘When there are bigger obstacles in the indoor environment such as elevator, the radio waves basically can not penetrate it. The contribution of received signal strength by transmission and reflection will be greatly reduced, and most of the time, the radio waves will reach the user by bypass diffraction. Therefore, the traditional path loss model is no longer applicable, and the improved model should be proposed. In this paper, we firstly proposed an indoor radio propagation model based on dominant path in which the received signal strength has nothing to do with the direct distance between user and access point, but is related to the length of dominant path. Then on the basis of dominant path model, the NLOS influence is considered in order to further improve the accuracy of dominant path model. Experimental results demonstrated that the proposed dominant path model can improve the accuracy of traditional path loss model remarkably.