This paper deals with the computational simulation of both scalar wave and vector wave propagation problems in infinite domains. Due to its advantages in simulating complicated geometry and complex material properties...This paper deals with the computational simulation of both scalar wave and vector wave propagation problems in infinite domains. Due to its advantages in simulating complicated geometry and complex material properties, the finite element method is used to simulate the near field of a wave propagation problem involving an infinite domain. To avoid wave reflection and refraction at the common boundary between the near field and the far field of an infinite domain, we have to use some special treatments to this boundary. For a wave radiation problem, a wave absorbing boundary can be applied to the common boundary between the near field and the far field of an infinite domain, while for a wave scattering problem, the dynamic infinite element can be used to propagate the incident wave from the near field to the far field of the infinite domain. For the sake of illustrating how these two different approaches are used to simulate the effect of the far field, a mathematical expression for a wave absorbing boundary of high-order accuracy is derived from a two-dimensional scalar wave radiation problem in an infinite domain, while the detailed mathematical formulation of the dynamic infinite element is derived from a two-dimensional vector wave scattering problem in an infinite domain. Finally, the coupled method of finite elements and dynamic infinite elements is used to investigate the effects of topographical conditions on the free field motion along the surface of a canyon.展开更多
In this paper, we study the boundary-value problem for mixed type equation with singular coefficient. We prove the unique solvability of the mentioned problem with the help of the extremum principle. The proof of the ...In this paper, we study the boundary-value problem for mixed type equation with singular coefficient. We prove the unique solvability of the mentioned problem with the help of the extremum principle. The proof of the existence is based on the theory of singular integral equations, Wiener-Hopf equations and Fredholm integral equations.展开更多
In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not b...In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not be compact operators from E to R~1.展开更多
文摘This paper deals with the computational simulation of both scalar wave and vector wave propagation problems in infinite domains. Due to its advantages in simulating complicated geometry and complex material properties, the finite element method is used to simulate the near field of a wave propagation problem involving an infinite domain. To avoid wave reflection and refraction at the common boundary between the near field and the far field of an infinite domain, we have to use some special treatments to this boundary. For a wave radiation problem, a wave absorbing boundary can be applied to the common boundary between the near field and the far field of an infinite domain, while for a wave scattering problem, the dynamic infinite element can be used to propagate the incident wave from the near field to the far field of the infinite domain. For the sake of illustrating how these two different approaches are used to simulate the effect of the far field, a mathematical expression for a wave absorbing boundary of high-order accuracy is derived from a two-dimensional scalar wave radiation problem in an infinite domain, while the detailed mathematical formulation of the dynamic infinite element is derived from a two-dimensional vector wave scattering problem in an infinite domain. Finally, the coupled method of finite elements and dynamic infinite elements is used to investigate the effects of topographical conditions on the free field motion along the surface of a canyon.
文摘In this paper, we study the boundary-value problem for mixed type equation with singular coefficient. We prove the unique solvability of the mentioned problem with the help of the extremum principle. The proof of the existence is based on the theory of singular integral equations, Wiener-Hopf equations and Fredholm integral equations.
文摘In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not be compact operators from E to R~1.