This study focuses on the insert-injection molding process. The thermoset composite inserts in this study were carbon fiber/epoxy (CF/Epoxy) prepreg sheets. The injected molded part was glass fiber contained phenolic ...This study focuses on the insert-injection molding process. The thermoset composite inserts in this study were carbon fiber/epoxy (CF/Epoxy) prepreg sheets. The injected molded part was glass fiber contained phenolic resin (GF/PF). The CF/Epoxy was placed in the mold cavity prior to injecting GF/PF onto the inserted injection molded CF/Epoxy specimens. The role of adhesion between the inserted part and injected resin on the mechanical properties was evaluated by 3 point bending and impact tests. In addition, the effect of prepreg orientation on the mechanical properties of the prepreg inserted-injection molding system was investigated. It was found that the prepreg with unidirectional orientation significantly improved flexural and impact strength of the inserted injection molding composites, providing better support and resistance to bending and impact loading. The main failure modes of the specimens were structural and adhesive failure.展开更多
In this work, the generalizing of the finite element method (FEM) of thermoplastic prepreg insert injection molding composites was investigated. The specimens were prepared using glass fiber/polyamidc 6 (GF/PA6) inser...In this work, the generalizing of the finite element method (FEM) of thermoplastic prepreg insert injection molding composites was investigated. The specimens were prepared using glass fiber/polyamidc 6 (GF/PA6) inserted prepreg, and their characteristics were investigated and compared under ANSYS workbench program. The prediction of the bending initial fracture point under analytical tensile testing with interlayer on prepreg insert moldings was focused. It was found that the bending initial fracture point was applied to predict by matching the shear stress. There was obtained from analytical tensile testing and bending analysis. Therefore, it can be obtained the optimum of the clastic modulus ratio on the injection part/interlayer/insert part by using FEM via ANSYS workbench.展开更多
In the injection molding process, plastic products are difficult to demold due to friction force between the cavity and products, thus, finished products might be deformed or damaged. Therefore, designers should add a...In the injection molding process, plastic products are difficult to demold due to friction force between the cavity and products, thus, finished products might be deformed or damaged. Therefore, designers should add a draft angle to the geometric surface of products, which is parallel to the unloading direction, in order to help the products eject smoothly from the cavity. This study uses CAD software as the main architecture to develop the function of automatic draft angle recognition and construction. The study is divided into three stages. First, the geometric features of products are identified in the CAD model by induced algorithm, then the quilts to be added in the draft design are determined and classified. Finally, draft angles are created in different ways according to different surfaces. An algorithm suitable for automatic draft recognition and construction, as well as the constraints of automatic creation of draft angle, is proposed. The feature recognition algorithm of this study can automatically inspect 90% of the surfaces to be drafted, and the automatic creation of draft features can economize 80% of required mouse clicks, thus, effectively increasing draft angle design efficiency, and preventing errors in mold design and manufacturing.展开更多
This study investigated the relationship between a subject’s evaluation of injection molding machines (IMMs) and formal design features using Kansei engineering. This investigation used 12 word pairs to evaluate the ...This study investigated the relationship between a subject’s evaluation of injection molding machines (IMMs) and formal design features using Kansei engineering. This investigation used 12 word pairs to evaluate the IMM configurations and employed the semantic differential method to explore the perception of 60 interviewees of 12 examples. The relationship between product feature design and corresponding words was derived by multiple regression analysis. Factor analysis reveals that the 12 examples can be categorized as two styles—advanced style and succinct style. For the advanced style, an IMM should use a rectangular form for the clamping-unit cover and a full-cover for the injection-unit. For the succinct style, the IMM configuration should use a beveled form for the safety cover and a vertical rectangular form for the clamping-unit cover. Quantitative data and suggested guidelines for the relationship between design features and interviewee evaluations are useful to product designers when formulating design strategies.展开更多
On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the c...On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the computer-aided design is described by combining with the actual characteristic in injection mold design, and the design process of case-based reasoning method is also given. A case library including the information of parting surface is built with the index of main shape features, The automatic design of the mold parting surface is realized combined with the forward-reasoning method and the similarity solution procedure. The rule knowledge library is also founded including the knowledge, principles and experiences for parting surface design. An example is used to show the validity of the method, and the quality and the efficiency of the mold design are improved.展开更多
Short Retraction Notice The paper does not meet the standards of "Open Journal of Composite Materials". This article has been retracted to straighten the academic record. In making this decision the Editoria...Short Retraction Notice The paper does not meet the standards of "Open Journal of Composite Materials". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Chengye Fan (EiC of OJCM) The full retraction notice in PDF is preceding the original paper, which is marked "Withdraw".展开更多
For the purpose of reducing the volumetric shrinkage and volumetric shrinkage variation, the process in injection molding of aspheric plastic lens was simulated, and several process parameters which include holding pr...For the purpose of reducing the volumetric shrinkage and volumetric shrinkage variation, the process in injection molding of aspheric plastic lens was simulated, and several process parameters which include holding pressure, melt temperature, mold temperature, fill time, holding pressure time and cooling time were optimized by using an orthogonal experimental design method. Finally, the optimum process parameters and the influence degree of process parameters on the average volumetric shrinkage and the volumetric shrinkage variation are obtained.展开更多
Residual stresses can reduce the reliability of plastic injection molding parts. This work is an attempt to model the residual stresses as a function of injection molding parameters. More stress is placed on reducing ...Residual stresses can reduce the reliability of plastic injection molding parts. This work is an attempt to model the residual stresses as a function of injection molding parameters. More stress is placed on reducing the number of input factors and to include all possible interactions. For this purpose, two-stage experimentation is suggested: a factor screening stage and Response Surface optimization stage. In screening stage Taguchi 3 level experimental design is used to classify the input parameters as significant and non-significant factors. Eight input variables were classified into 3 non-significant and 5 significant factors using this screening stage. Thus for the Response Surface optimization stage: instead of doing 160 experiments in Central Composite, 56 are only needed after the screening stage in half Central Composite Design. The best subset and regression model fitting tools in addition to model verification using randomly selected input setting were used to select a model for predicting residual stresses with a verified Root Mean Square Error (RSME) of nearly 0.93 MPa.展开更多
Numerical simulation of injection molding have had success in predicting the behavior of polymer melt in extremely complicated geometries. Most of the current numerical solutions are based on finite-element/finite-dif...Numerical simulation of injection molding have had success in predicting the behavior of polymer melt in extremely complicated geometries. Most of the current numerical solutions are based on finite-element/finite-difference/boundary-element/volume-control methods and the surface model. This paper discusses the development of an integrated CAE system for injection molding in detail, and presents the mathematics for numerical simulation of filling, packing, cooling, stress and warpage in injection molding. The developed system named as HsCAE3D is introduced at the end.展开更多
Quick material change is often encountered for the different colors or kinds of polymer in hot runner injecting molding process. Time costing and incompleteness of material change process often affects the quality and...Quick material change is often encountered for the different colors or kinds of polymer in hot runner injecting molding process. Time costing and incompleteness of material change process often affects the quality and productivity of products. In the practical production, multi injection or white material as the transition material is often adopted for quick material change. Based on the rheological behavior of the new and the previous plastic melt, the researches on the related problems were carried out. The concept of drag material change was originally presented. The physical and mathematical model on the simultaneous flow process of the new and the previous plastic melt in hot runner were built up, which can well explain the influence of the injection speed, pressure, viscosity difference, temperature and mold structure on the drag material change efficiency. When temperature in different position in the mold was increased and adjusted, the viscosity difference between the two kinds of melt can be controlled. Therefore the material change ability can be greatly improved during the whole material change process, getting rid of more and more difficult changing in the late stage.展开更多
文摘This study focuses on the insert-injection molding process. The thermoset composite inserts in this study were carbon fiber/epoxy (CF/Epoxy) prepreg sheets. The injected molded part was glass fiber contained phenolic resin (GF/PF). The CF/Epoxy was placed in the mold cavity prior to injecting GF/PF onto the inserted injection molded CF/Epoxy specimens. The role of adhesion between the inserted part and injected resin on the mechanical properties was evaluated by 3 point bending and impact tests. In addition, the effect of prepreg orientation on the mechanical properties of the prepreg inserted-injection molding system was investigated. It was found that the prepreg with unidirectional orientation significantly improved flexural and impact strength of the inserted injection molding composites, providing better support and resistance to bending and impact loading. The main failure modes of the specimens were structural and adhesive failure.
文摘In this work, the generalizing of the finite element method (FEM) of thermoplastic prepreg insert injection molding composites was investigated. The specimens were prepared using glass fiber/polyamidc 6 (GF/PA6) inserted prepreg, and their characteristics were investigated and compared under ANSYS workbench program. The prediction of the bending initial fracture point under analytical tensile testing with interlayer on prepreg insert moldings was focused. It was found that the bending initial fracture point was applied to predict by matching the shear stress. There was obtained from analytical tensile testing and bending analysis. Therefore, it can be obtained the optimum of the clastic modulus ratio on the injection part/interlayer/insert part by using FEM via ANSYS workbench.
文摘In the injection molding process, plastic products are difficult to demold due to friction force between the cavity and products, thus, finished products might be deformed or damaged. Therefore, designers should add a draft angle to the geometric surface of products, which is parallel to the unloading direction, in order to help the products eject smoothly from the cavity. This study uses CAD software as the main architecture to develop the function of automatic draft angle recognition and construction. The study is divided into three stages. First, the geometric features of products are identified in the CAD model by induced algorithm, then the quilts to be added in the draft design are determined and classified. Finally, draft angles are created in different ways according to different surfaces. An algorithm suitable for automatic draft recognition and construction, as well as the constraints of automatic creation of draft angle, is proposed. The feature recognition algorithm of this study can automatically inspect 90% of the surfaces to be drafted, and the automatic creation of draft features can economize 80% of required mouse clicks, thus, effectively increasing draft angle design efficiency, and preventing errors in mold design and manufacturing.
文摘This study investigated the relationship between a subject’s evaluation of injection molding machines (IMMs) and formal design features using Kansei engineering. This investigation used 12 word pairs to evaluate the IMM configurations and employed the semantic differential method to explore the perception of 60 interviewees of 12 examples. The relationship between product feature design and corresponding words was derived by multiple regression analysis. Factor analysis reveals that the 12 examples can be categorized as two styles—advanced style and succinct style. For the advanced style, an IMM should use a rectangular form for the clamping-unit cover and a full-cover for the injection-unit. For the succinct style, the IMM configuration should use a beveled form for the safety cover and a vertical rectangular form for the clamping-unit cover. Quantitative data and suggested guidelines for the relationship between design features and interviewee evaluations are useful to product designers when formulating design strategies.
文摘On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the computer-aided design is described by combining with the actual characteristic in injection mold design, and the design process of case-based reasoning method is also given. A case library including the information of parting surface is built with the index of main shape features, The automatic design of the mold parting surface is realized combined with the forward-reasoning method and the similarity solution procedure. The rule knowledge library is also founded including the knowledge, principles and experiences for parting surface design. An example is used to show the validity of the method, and the quality and the efficiency of the mold design are improved.
文摘Short Retraction Notice The paper does not meet the standards of "Open Journal of Composite Materials". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Chengye Fan (EiC of OJCM) The full retraction notice in PDF is preceding the original paper, which is marked "Withdraw".
文摘For the purpose of reducing the volumetric shrinkage and volumetric shrinkage variation, the process in injection molding of aspheric plastic lens was simulated, and several process parameters which include holding pressure, melt temperature, mold temperature, fill time, holding pressure time and cooling time were optimized by using an orthogonal experimental design method. Finally, the optimum process parameters and the influence degree of process parameters on the average volumetric shrinkage and the volumetric shrinkage variation are obtained.
文摘Residual stresses can reduce the reliability of plastic injection molding parts. This work is an attempt to model the residual stresses as a function of injection molding parameters. More stress is placed on reducing the number of input factors and to include all possible interactions. For this purpose, two-stage experimentation is suggested: a factor screening stage and Response Surface optimization stage. In screening stage Taguchi 3 level experimental design is used to classify the input parameters as significant and non-significant factors. Eight input variables were classified into 3 non-significant and 5 significant factors using this screening stage. Thus for the Response Surface optimization stage: instead of doing 160 experiments in Central Composite, 56 are only needed after the screening stage in half Central Composite Design. The best subset and regression model fitting tools in addition to model verification using randomly selected input setting were used to select a model for predicting residual stresses with a verified Root Mean Square Error (RSME) of nearly 0.93 MPa.
基金Supported by National Natural Science Foundation of China (20490224)
文摘Numerical simulation of injection molding have had success in predicting the behavior of polymer melt in extremely complicated geometries. Most of the current numerical solutions are based on finite-element/finite-difference/boundary-element/volume-control methods and the surface model. This paper discusses the development of an integrated CAE system for injection molding in detail, and presents the mathematics for numerical simulation of filling, packing, cooling, stress and warpage in injection molding. The developed system named as HsCAE3D is introduced at the end.
文摘Quick material change is often encountered for the different colors or kinds of polymer in hot runner injecting molding process. Time costing and incompleteness of material change process often affects the quality and productivity of products. In the practical production, multi injection or white material as the transition material is often adopted for quick material change. Based on the rheological behavior of the new and the previous plastic melt, the researches on the related problems were carried out. The concept of drag material change was originally presented. The physical and mathematical model on the simultaneous flow process of the new and the previous plastic melt in hot runner were built up, which can well explain the influence of the injection speed, pressure, viscosity difference, temperature and mold structure on the drag material change efficiency. When temperature in different position in the mold was increased and adjusted, the viscosity difference between the two kinds of melt can be controlled. Therefore the material change ability can be greatly improved during the whole material change process, getting rid of more and more difficult changing in the late stage.