This paper reported the design and implementation of a bit rate adaptive Optical Electronic Optical(O/E/O)transponder accomplishing almost full data rate transparency up to 2.5 Gb/s with 3R(Reamplifying,Reshaping and ...This paper reported the design and implementation of a bit rate adaptive Optical Electronic Optical(O/E/O)transponder accomplishing almost full data rate transparency up to 2.5 Gb/s with 3R(Reamplifying,Reshaping and Retiming)processing in electronic domain.Based on the chipsets performing clock recovery in several continuous bit rate ranges,a clock and data regenerating circuit self adaptive to the bit rate of input signal was developed.Key design issues were presented,laying stress on the functional building blocks and scheme for the bit rate adaptive retiming circuit.The experimental results show a good scalability performance.展开更多
The A'Prune quality of service (QoS) routing algorithm was proposed to compute K-shortest paths satisfying multiple QoS constraints, The A'Prune is considered to be one of the practical routing algorithms for inte...The A'Prune quality of service (QoS) routing algorithm was proposed to compute K-shortest paths satisfying multiple QoS constraints, The A'Prune is considered to be one of the practical routing algorithms for intelligent optical networks because of its flexibility in handling many practical constraints, This article gives detailed performance studies of the algorithm through extensive simulation experiments. We found that both the running time and the memory space requirements of the algorithm are large, especially when the network size increases, in this article, we also propose an approach to improving the performance of the A'Prune algorithm. The improvements should make the A'Prune algorithm more attractive for practical use in intelligent optical networks.展开更多
Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical...Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical Network(SAON) becomes a promising paradigm. In this paper, the related space optical communications and network programs around the world are first briefly introduced. Then the intelligent Space All-Optical Network(i-SAON), which can be deemed as an advanced SAON, is illustrated, with the emphasis on its features of high survivability, sensing and reconfiguration intelligence, and large capacity for all optical load and switching. Moreover, some key technologies for i-SAON are described, including the rapid adjustment and control of the laser beam direction, the deep learning-based multi-path anti-fault routing, the intelligent multi-fault diagnosis and switching selection mechanism, and the artificial intelligence-based spectrum sensing and situational forecasting.展开更多
基金National High Project Fund(863)(No.2001AA121073)
文摘This paper reported the design and implementation of a bit rate adaptive Optical Electronic Optical(O/E/O)transponder accomplishing almost full data rate transparency up to 2.5 Gb/s with 3R(Reamplifying,Reshaping and Retiming)processing in electronic domain.Based on the chipsets performing clock recovery in several continuous bit rate ranges,a clock and data regenerating circuit self adaptive to the bit rate of input signal was developed.Key design issues were presented,laying stress on the functional building blocks and scheme for the bit rate adaptive retiming circuit.The experimental results show a good scalability performance.
文摘The A'Prune quality of service (QoS) routing algorithm was proposed to compute K-shortest paths satisfying multiple QoS constraints, The A'Prune is considered to be one of the practical routing algorithms for intelligent optical networks because of its flexibility in handling many practical constraints, This article gives detailed performance studies of the algorithm through extensive simulation experiments. We found that both the running time and the memory space requirements of the algorithm are large, especially when the network size increases, in this article, we also propose an approach to improving the performance of the A'Prune algorithm. The improvements should make the A'Prune algorithm more attractive for practical use in intelligent optical networks.
基金supported by CAST Fund for Distinguished Young TalentsCASC Scientific and Technological Innovative Research and Design Projects
文摘Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical Network(SAON) becomes a promising paradigm. In this paper, the related space optical communications and network programs around the world are first briefly introduced. Then the intelligent Space All-Optical Network(i-SAON), which can be deemed as an advanced SAON, is illustrated, with the emphasis on its features of high survivability, sensing and reconfiguration intelligence, and large capacity for all optical load and switching. Moreover, some key technologies for i-SAON are described, including the rapid adjustment and control of the laser beam direction, the deep learning-based multi-path anti-fault routing, the intelligent multi-fault diagnosis and switching selection mechanism, and the artificial intelligence-based spectrum sensing and situational forecasting.