期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
The Interface Stress Field in the Elastic System Consisting of the Hollow Cylinder and Surrounding Elastic Medium Under 3D Non-Axisymmetric Forced Vibration 被引量:2
1
作者 Surkay D.Akbarov Mahir A.Mehdiyev 《Computers, Materials & Continua》 SCIE EI 2018年第1期61-81,共21页
The paper develops and employs analytical-numerical solution method for the study of the time-harmonic dynamic stress field in the system consisting of the hollow cylinder and surrounding elastic medium under the non-... The paper develops and employs analytical-numerical solution method for the study of the time-harmonic dynamic stress field in the system consisting of the hollow cylinder and surrounding elastic medium under the non-axisymmetric forced vibration of this system.It is assumed that in the interior of the hollow cylinder the point-located with respect to the cylinder axis,non-axisymmetric with respect to the circumferential direction and uniformly distributed time-harmonic forces act.Corresponding boundary value problem is solved by employing of the exponential Fourier transformation with respect to the axial coordinate and by employing of the Fourier series expansion of these transformations.Numerical results on the frequency response of the interface normal stresses are presented and discussed. 展开更多
关键词 interface stress field frequency response hollow cylinder elastic medium forced vibration
下载PDF
Numerical Study on Effect of Non-uniform CMAS Penetration on TGO Growth and Interface Stress Behavior of APS TBCs
2
作者 Zhenwei Cai Zifan Zhang +2 位作者 Yingzheng Liu Xiaofeng Zhao Weizhe Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期98-113,共16页
The penetration of CaO-MgO-Al_(2)O_(3)-SiO_(2)(CMAS)is one of the most significant factors that induce the failure of air-plasma-sprayed thermal barrier coatings(APS TBCs).The direct penetration of CMAS changes the th... The penetration of CaO-MgO-Al_(2)O_(3)-SiO_(2)(CMAS)is one of the most significant factors that induce the failure of air-plasma-sprayed thermal barrier coatings(APS TBCs).The direct penetration of CMAS changes the thermal/mechanical properties of the top coat(TC)layer,which affects the thermal mismatch stress behavior and the growth of thermally grown oxide(TGO)at the TC/bond coat(BC)interface,thereby resulting in a more complicated interface stress state.In the present study,a two-dimensional global model of APS TBCs with half of the TC layer penetrated by CMAS is established to investigate the effect of non-uniform CMAS penetration on the interface stress behavior.Subsequently,a local model extracted from the global model is established to investigate the effects of interface morphologies and CMAS penetration depth.The results show that non-uniform CMAS penetration causes non-uniform TGO growth in APS TBCs,which consequently causes the stress behavior to vary along the interface.Furthermore,the CMAS pen-etration depth imposes a significant effect on the TC/TGO interface stress behavior,whereas the interface roughness exerts a prominent effect on the stress level at the BC/TGO interface under CMAS penetration.This study reveals the mechanism associated with the effect of non-uniform CMAS penetration on the interface stress behavior in APS TBCSs. 展开更多
关键词 CMAS non-uniform penetration TGO growth interface stress CMAS penetration depth interface roughness
下载PDF
Interface stress element method and its application in analysis of anti-sliding stability of gravity dam 被引量:4
3
作者 ZHANG Qing WANG ZhiQiang XIA XiaoZhou 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第12期3285-3291,共7页
The rigid body limit equilibrium method (LEM) and the nonlinear finite element method (NFEM) are often used in the analysis of anti-sliding stability of gravity dam. But LEM cannot reflect the process of progressi... The rigid body limit equilibrium method (LEM) and the nonlinear finite element method (NFEM) are often used in the analysis of anti-sliding stability of gravity dam. But LEM cannot reflect the process of progressive instability and mechanical mecha- nism on failure for rock mass while NFEM is difficult to use to solve the displacement discontinuity of weak structural plane. Combining the research with Xiangjiaba Hydropower Station project, the analysis of anti-sliding stability for segment 12# of the dam has been carried out using interface stress element method (ISEM). The results can reflect the most dangerous location, the scope and distribution of failure zone in weak structural plane, and present the process of progressive failure in dam foun- dation as well as the safety coefficient of possible sliding body. These achievements provide an important technical reference for dam foundation treatment measures. The computational results show that ISEM can naturally describe discontinuous de- formation of rock mass such as dislocation, openness and sliding. Besides, this method is characterized by good adaptability, convenient calculation and high compatibility, thus it is regarded as an effective way to make an analysis of anti-sliding stabil- ity of gravity dam 展开更多
关键词 discontinuous mechanics interface stress element method gravity dam analysis of anti-sliding stability
原文传递
Experimental investigation of interface curing stresses between PMMA and composite using digital speckle correlation method 被引量:4
4
作者 Yinji Ma,Tiechui Xiong,and Xuefeng Yao Department of Engineering Mechanics,Applied Mechanics Laboratory,Tsinghua University,Beijing 100084,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第5期14-17,共4页
This paper studies the interface curing stresses between polymethyl methacrylate (PMMA) and composite by means of digital speckle correlation method (DSCM).A new method by combining DSCM with the marker points is deve... This paper studies the interface curing stresses between polymethyl methacrylate (PMMA) and composite by means of digital speckle correlation method (DSCM).A new method by combining DSCM with the marker points is developed to measure the interface curing stresses,and the measurement principle is introduced.The interface curing stresses between PMMA and composite with different curing bonding conditions are measured and analyzed,this indicates that the residual stress for furnace heating and furnace cooling is the smallest.Finally,the measurement error is discussed by means of finite element method,the influences of glass microsphere between adhesive and PMMA can be ignored. 展开更多
关键词 interface stress CURE adhesive layer digital speckle correlation method
下载PDF
Dynamic Investigation of Interface Stress on Below-Knee Residual Limb in a Prosthetic Socket 被引量:2
5
作者 贾晓红 张明 +1 位作者 王人成 金德闻 《Tsinghua Science and Technology》 SCIE EI CAS 2004年第6期680-683,共4页
The dynamic effects of inertial loads on the interface stresses between a residual limb and the trans-tibial prosthetic socket were investigated. A 3-D nonlinear finite element model, based on the actual geometry of t... The dynamic effects of inertial loads on the interface stresses between a residual limb and the trans-tibial prosthetic socket were investigated. A 3-D nonlinear finite element model, based on the actual geometry of the residual limb, including internal bones and socket liner, was developed to study the mechanical interaction between the socket and the residual limb during walking. To simulate the friction/slip boundary conditions between the skin and liner, automated surface-to-surface contact was used. The results show that interface pressure and shear stress have a similar double-peaked waveform shape in the stance phase. The average difference in interface stresses between the cases with and without consideration of inertial forces is 8.4% in the stance phase and 20.1% in the swing phase. The results suggest that the dynamic effects of inertial loads on interface stress distribution during walking must be considered in prosthetic socket design. 展开更多
关键词 prosthetic socket interface stress finite element analysis inertial load dynamic effect
原文传递
Fracture behaviors of columnar jointed rock mass using interface mechanics theorem 被引量:1
6
作者 Wei Gao Shuangshuang Ge Chengjie Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2877-2891,共15页
For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of inte... For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of interface mechanics for composite materials,the interface stresses of the vertical and horizontal joints,which are the two primary joints in the CJRM under triaxial compression,are studied,and their mathematical expressions are derived based on the superposition principle.Based on the obtained interface stresses of the vertical and horizontal joints in the CJRM,the crack initiation of the joint interface in the CJRM is studied using the maximum circumferential stress theory in fracture mechanics.Moreover,based on this investigation,the fracture behaviors of CJRM are analyzed.According to the results of similar material physical model tests for the CJRM,the theoretical study is verified.Finally,the influence of the mechanical parameters of the CJRM on the joint interface stress is discussed comprehensively. 展开更多
关键词 Columnar jointed rock mass(CJRM) Joint interface stress interface mechanics Crack initiation stress Fracture behaviors
下载PDF
Effect of interaction of dislocations with core-shell nanowires on critical shear stress of nanocomposites 被引量:2
7
作者 方棋洪 刘咏 +1 位作者 李慧中 黄伯云 《Journal of Central South University》 SCIE EI CAS 2010年第3期437-442,共6页
The contribution to the critical shear stress of nanocomposites caused by the interaction between screw dislocations and core-shell nanowires (coated nanowires) with interface stresses was derived by means of the MOTT... The contribution to the critical shear stress of nanocomposites caused by the interaction between screw dislocations and core-shell nanowires (coated nanowires) with interface stresses was derived by means of the MOTT and NABARRO's model. The influence of interface stresses on the critical shear stress was examined. The result indicates that, if the volume fraction of the core-shell nanowires keeps a constant, an optimal critical shear stress may be obtained when the radius of the nanowire with interface stresses reaches a critical value, which differs from the classical solution without considering the interface stresses under the same external conditions. In addition, the material may be strengthened by the soft nanowires when the interface stresses are considered. There also exist critical values of the elastic modulus and the thickness of surface coating to alter the strengthening effect produced by it. 展开更多
关键词 NANOCOMPOSITES dislocations NANOWIRE interface stress critical shear stress
下载PDF
Elliptical inclusion in an anisotropic plane:non-uniform interface effects
8
作者 Pengyu PEI Ming DAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第5期667-688,共22页
We study the plane deformation of an elastic composite system made up of an anisotropic elliptical inclusion and an anisotropic foreign matrix surrounding the inclusion.In order to capture the influence of interface e... We study the plane deformation of an elastic composite system made up of an anisotropic elliptical inclusion and an anisotropic foreign matrix surrounding the inclusion.In order to capture the influence of interface energy on the local elastic field as the size of the inclusion approaches the nanoscale,we refer to the Gurtin-Murdoch model of interface elasticity to describe the inclusion-matrix interface as an imaginary and extremely stiff but zero-thickness layer of a finite stretching modulus.As opposed to isotropic cases in which the effects of interface elasticity are usually assumed to be uniform(described by a constant interface stretching modulus for the entire interface),the anisotropic case considered here necessitates non-uniform effects of interface elasticity(described by a non-constant interface stretching modulus),because the bulk surrounding the interface is anisotropic.To this end,we treat the interface stretching modulus of the anisotropic composite system as a variable on the interface curve depending on the specific tangential direction of the interface.We then devise a unified analytic procedure to determine the full stress field in the inclusion and matrix,which is applicable to the arbitrary orientation and aspect ratio of the inclusion,an arbitrarily variable interface modulus,and an arbitrary uniform external loading applied remotely.The non-uniform interface effects on the external loading-induced stress distribution near the interface are explored via a group of numerical examples.It is demonstrated that whether the nonuniformity of the interface effects has a significant effect on the stress field around the inclusion mainly depends on the direction of the external loading and the aspect ratio of the inclusion. 展开更多
关键词 elliptical inclusion anisotropic material interface stress Gurtin-Murdoch model membrane-type interface
下载PDF
SIF-based fracture criterion for interface cracks 被引量:3
9
作者 Xing Ji 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期491-496,共6页
The complex stress intensity factor K governing the stress field of an interface crack tip may be split into two parts, i.e.,■ and s^(-iε), so that K = ■ s^(-iε), s is a characteristic length and ε is the osc... The complex stress intensity factor K governing the stress field of an interface crack tip may be split into two parts, i.e.,■ and s^(-iε), so that K = ■ s^(-iε), s is a characteristic length and ε is the oscillatory index. ■ has the same dimension as the classical stress intensity factor and characterizes the interface crack tip field. That means a criterion for interface cracks may be formulated directly with■, as Irwin(ASME J. Appl. Mech. 24:361–364, 1957) did in 1957 for the classical fracture mechanics. Then, for an interface crack,it is demonstrated that the quasi Mode I and Mode II tip fields can be defined and distinguished from the coupled mode tip fields. Built upon SIF-based fracture criteria for quasi Mode I and Mode II, the stress intensity factor(SIF)-based fracture criterion for mixed mode interface cracks is proposed and validated against existing experimental results. 展开更多
关键词 interface crack stress singularity Fracture criterion stress intensity factor
下载PDF
Analysis of mode Ⅲ crack perpendicular to the interface between two dissimilar strips 被引量:2
10
作者 M.S.Matbuly 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第4期433-438,共6页
The present work is concerned with the problem of mode Ⅲ crack perpendicular to the interface of a bi-strip composite. One of these strips is made of a functionally graded material and the other of an isotropic mater... The present work is concerned with the problem of mode Ⅲ crack perpendicular to the interface of a bi-strip composite. One of these strips is made of a functionally graded material and the other of an isotropic material, which contains an edge crack perpendicular to and terminating at the interface. Fourier transforms and asymptotic analysis are employed to reduce the problem to a singular integral equation which is numerically solved using Gauss-Chebyshev quadrature formulae. Furthermore, a parametric study is carried out to investigate the effects of elastic and geometric characteristics of the composite on the values of stress intensity factor. 展开更多
关键词 Composite · interface · Perpendicular crack ·Anti-plane shear stress · Fourier transform. Singular integral equation
下载PDF
The Influence of the Imperfectness of Contact Conditions on the Critical Velocity of the Moving Load Acting in the Interior of the Cylinder Surrounded with Elastic Medium 被引量:2
11
作者 M.Ozisik M.A.Mehdiyev S.D.Akbarov 《Computers, Materials & Continua》 SCIE EI 2018年第2期103-136,共34页
The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise hom... The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise homogeneous body model by employing the exact field equations of the linear theory of elastodynamics.It is assumed that the internal pressure is point-located with respect to the cylinder axis and is axisymmetric in the circumferential direction.Moreover,it is assumed that shear-spring type imperfect contact conditions on the interface between the cylinder and surrounding elastic medium are satisfied.The focus is on the influence of the mentioned imperfectness on the critical velocity of the moving load and this is the main contribution and difference of the present paper the related other ones.The other difference of the present work from the related other ones is the study of the response of the interface stresses to the load moving velocity,distribution of these stresses with respect to the axial coordinates and to the time.At the same time,the present work contains detail analyses of the influence of problem parameters such as the ratio of modulus of elasticity,the ratio of the cylinder thickness to the cylinder radius,and the shear-spring type parameter which characterizes the degree of the contact imperfection on the values of the critical velocity and stress distribution.Corresponding numerical results are presented and discussed.In particular,it is established that the values of the critical velocity of the moving pressure decrease with the external radius of the cylinder under constant thickness of that. 展开更多
关键词 Moving internal pressure critical velocity circular hollow cylinder surrounded by elastic medium shear-spring type imperfection interface stresses
下载PDF
Deformation tests and failure process analysis of an anchorage structure 被引量:4
12
作者 Zhao Tongbin Yin Yanchun +1 位作者 Tan Yunliang Song Yimin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期237-242,共6页
In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). T... In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock. 展开更多
关键词 Anchorage structure Digital speckle correlation methods Deformation field interface stress Failure process
下载PDF
Interaction Between Crack and Elastic Inclusion 被引量:1
13
作者 张明焕 汤任基 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第4期307-318,共12页
By using the basic displacements and stresses caused by a single elastic inclusionand a single crack on infinite plane,the interaction problem between a crack and anelastic inclusion is reduced io solve a set of Cauch... By using the basic displacements and stresses caused by a single elastic inclusionand a single crack on infinite plane,the interaction problem between a crack and anelastic inclusion is reduced io solve a set of Cauchy-type singular integral equation.Based on this result,the singular behaviour of the solution for the inclusion-branchingcrack is analysed theoretically and the oscillating singular interface stress field isobtained. For the separating inclusion-crack problem,the stress intensity factors at thetips and the interface stress of the inclusion are calculated and the results of which aresatisfactory. 展开更多
关键词 inclusion and crack inclusion-branching crack stress intensityfactor interface stress
下载PDF
THE INTERACTION PROBLEM BETWEEN THE ELASTIC LINE INCLUSIONS
14
作者 陶昉敏 张明焕 汤任基 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第4期371-379,共9页
Using the engineering model of elastic line inclusion and the basic solutions of a single inclusion, the interaction problem between line inclusions in an elastic solid it-as investigated. A set of standard Cauchy-typ... Using the engineering model of elastic line inclusion and the basic solutions of a single inclusion, the interaction problem between line inclusions in an elastic solid it-as investigated. A set of standard Cauchy-type singular equations of the problem was presented. The stress intensity factors at points of inclusions and the interface stresses of two sides of the inclusion were calculated. Several numerical examples were given. The results could be regarded as a reference to engineering. 展开更多
关键词 elastic inclusion INTERACTION stress intensity factor interface stress
下载PDF
INTERACTION BETWEEN A RIGID LINE INCLUSION AND AN ELASTIC CIRCULAR INCLUSION
15
作者 汤任基 陶昉敏 张明焕 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第5期441-448,共8页
In this paper, the interaction problem of a rigid line inclusion and an elastic circular inclusion has been reduced to solve a normal Cauchy-type singular integral equation. The stress intensity, factors at the ends o... In this paper, the interaction problem of a rigid line inclusion and an elastic circular inclusion has been reduced to solve a normal Cauchy-type singular integral equation. The stress intensity, factors at the ends of the rigid line inclusion and the interface stresses of the inclusions are obtained. 展开更多
关键词 rigid line inclusion elastic circular inclusion stress intensity factor interface stress
下载PDF
Dynamic fracture analysis of adhesive bonded material under normal loading
16
作者 Yanhong Cai Haoran Chen Xiaozhi Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第1期107-112,共6页
Dynamic fracture behavior of a Griffith crack along the interface of an adhesive bonded material under normal loading is studied. The singular integral equations are obtained by employing integral transformation and i... Dynamic fracture behavior of a Griffith crack along the interface of an adhesive bonded material under normal loading is studied. The singular integral equations are obtained by employing integral transformation and introducing dislocation density functions. By adopting Gauss-Jacobi integration formula, the problem is reduced to the solution of algebraic equations, and by collocation dots method. their solutions can be obtained Based on the parametric discussions presented in the paper, the following conclusions can be drawn: (1) Mode I dynamic stress intensity factor (DSIF) increases with increasing initial crack length and decreasing visco-elastic layer thickness, revealing distinct size effect; (2) The influence of the visco-elastic adhesive relaxation time on the DSIF should not be ignored. 展开更多
关键词 Adhesive bonded material interface crackDynamic stress intensity factor Integral transformationSingular integral equation
下载PDF
SURFACE STRESS EFFECT IN MECHANICS OF NANOSTRUCTURED MATERIALS 被引量:14
17
作者 Jianxiang Wang Zhuping Huang +5 位作者 Huiling Duan Shouwen Yu Xiqiao Feng Gangfeng Wang Weixu Zhang Tiejun Wang 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第1期52-82,共31页
This review article summarizes the advances in the surface stress effect in mechanics of nanostructured elements, including nanoparticles, nanowires, nanobeams, and nanofilms, and heterogeneous materials containing na... This review article summarizes the advances in the surface stress effect in mechanics of nanostructured elements, including nanoparticles, nanowires, nanobeams, and nanofilms, and heterogeneous materials containing nanoscale inhomogeneities. It begins with the fundamental formulations of surface mechanics of solids, including the definition of surface stress as a surface excess quantity, the surface constitutive relations, and the surface equilibrium equations. Then, it depicts some theoretical and experimental studies of the mechanical properties of nanostructured elements, as well as the static and dynamic behaviour of cantilever sensors caused by the surface stress which is influenced by adsorption. Afterwards, the article gives a summary of the analytical elasto-static and dynamic solutions of a single as well as multiple inhomogeneities embedded in a matrix with the interface stress prevailing. The effect of surface elasticity on the diffraction of elastic waves is elucidated. Due to the difficulties in the analytical solution of inhomogeneities of complex shapes and configurations, finite element approaches have been developed for heterogeneous materials with the surface stress. Surface stress and surface energy are inherently related to crack propagation and the stress field in the vicinity of crack tips. The solutions of crack prob- lems taking into account surface stress effects are also included. Predicting the effective elastic and plastic responses of heterogeneous materials while taking into account surface and interface stresses has received much attention. The advances in this topic are inevitably delineated. Mechanics of rough surfaces appears to deserve special attention due to its theoretical and practical implications. Some most recent work is reviewed. Finally, some challenges are pointed out. They include the characterization of surfaces and interfaces of real nanomaterials, experimental mea- surements and verification of mechanical parameters of complex surfaces, and the effects of the physical and chemical processes on the surface properties, etc. 展开更多
关键词 surface/interface stress size-effect NANOWIRES nanobeams NANOFILMS nanoinhomogeneities cantilevers elastic wave CRACK elastic constants rough surface effective surface stress
原文传递
Analysis on annealing-induced stress of blind-via TSV using FEM 被引量:1
18
作者 Jie SHAO Tielin SHI +3 位作者 Li DU Lei SU Xiangning LU Guanglan LIAO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2018年第3期401-410,共10页
Copper-filled through silicon via (TSV) is a promising material owing to its application in high-density three-dimensional (3D) packaging. However, in TSV manufacturing, thermo-mechanical stress is induced during ... Copper-filled through silicon via (TSV) is a promising material owing to its application in high-density three-dimensional (3D) packaging. However, in TSV manufacturing, thermo-mechanical stress is induced during the annealing process, often causing reliability issues. In this paper, the finite element method is employed to investigate the impacts of via shape and SiO2 liner uniformity on the thermo-mechanical properties of copper-filled blind-via TSV after annealing. Top interface stress analysis on the TSV structure shows that the curvature of via openings releases stress concentration that leads to -60 MPa decrease of normal stresses, σxx and Cryy, in copper and -70 MPa decrease of σxx in silicon. Meanwhile, the vertical interface analysis shows that annealing-induced stress at the SiO2/Si interface depends heavily on SiO2 uniformity. By increasing the thickness of SiO2 linear, the stress at the vertical interface can be significantly reduced. Thus, process optimization to reduce the annealing-induced stress becomes feasible. The results of this study help us gain a better understanding of the thermo-mechanical behavior of the annealed TSV in 3D packaging. Keywords through silicon via (TSV), annealing-induced stress, interface stress, plastic deformation, finite element method 展开更多
关键词 through silicon via (TSV) annealing-inducedstress interface stress plastic deformation finite element method
原文传递
Combination of direct-forcing fictitious domain method and sharp interface method for dielectrophoresis of particles
19
作者 Yang Shi Zhaosheng Yu Xueming Shao 《Particuology》 SCIE EI CAS CSCD 2010年第4期351-359,共9页
In this paper, we combine the direct-forcing fictitious domain (DF/FD) method and the sharp interface method to resolve the problem of particle dielectrophoresis in two dimensions. The flow field and the motion of p... In this paper, we combine the direct-forcing fictitious domain (DF/FD) method and the sharp interface method to resolve the problem of particle dielectrophoresis in two dimensions. The flow field and the motion of particles are solved with the DF/FD method, the electric field is solved with the sharp inter- face method, and the electrostatic force on the particles is computed using the Maxwell stress tensor method. The proposed method is validated via three problems: effective conductivity of particle compos- ite between two planar plates, cell trapping in a channel, and motion of particles due to both conventional and traveling wave dielectrophoretic forces. 展开更多
关键词 Direct-forcing fictitious domain method Sharp interface methodMaxwell stress tensor method Dielectrophoresis Direct numerical simulation Cell trapping
原文传递
Compressive Strength and Interface Microstructure of PCBN Grains Brazed with High-Frequency Induction Heating Method
20
作者 Ye-Jun Zhu Wen-Feng Ding +2 位作者 Ze-Yu Zhao Yu-Can Fu Hong-Hua Su 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第7期641-649,共9页
In order to prepare monolayer brazed superabrasive wheels, the polycrystalline cubic boron nitride(PCBN)grains were brazed to AISI 1045 steel matrix with Ag–Cu–Ti filler alloy using the high-frequency induction he... In order to prepare monolayer brazed superabrasive wheels, the polycrystalline cubic boron nitride(PCBN)grains were brazed to AISI 1045 steel matrix with Ag–Cu–Ti filler alloy using the high-frequency induction heating technique. The compressive strengths of brazed grains were measured. Morphology, chemical composition and phase component of the brazing resultant around PCBN grain were also characterized. The results show that the maximum compressive strength of brazed grains is obtained in the case of brazing temperature of 965 °C, which does not decrease the original grain strength. Strong joining between Ag–Cu–Ti alloy and PCBN grains is dependent on the brazing resultants,such as TiB_2, TiN and AlTi_3, the formation mechanism of which is also discussed. Under the given experimental conditions, the optimum heating parameters were determined to be current magnitude of 24 A and scanning speed of0.5 mm/s. Finally, the brazing-induced residual tensile stress, which has a great influence on the grain fracture behavior in grinding, was determined through finite element analysis. 展开更多
关键词 High-frequency induction brazing PCBN grain Compressive strength interface microstructure Residual stress
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部