期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of phosphorus content on interfacial heat transfer and film deposition behavior during the high-temperature simulation of strip casting
1
作者 Wanlin Wang Cheng Lu +5 位作者 Liang Hao Jie Zeng Lejun Zhou Xinyuan Liu Xia Li Chenyang Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1016-1025,共10页
The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification ... The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment. 展开更多
关键词 strip casting interfacial heat transfer interfacial wettability naturally deposited film phosphorus content
下载PDF
Effect of H_(2)S content on relative permeability and capillary pressure characteristics of acid gas/brine/rock systems:A review 被引量:1
2
作者 Xiaoyan Zhang Qi Li +2 位作者 Mathias Simon Guodong Zheng Yongsheng Tan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期2003-2033,共31页
Geological storage of acid gas has been identified as a promising approach to reduce atmospheric carbon dioxide(CO_(2)),hydrogen sulfide(H_(2)S)and alleviate public concern resulting from the sour gas production.A goo... Geological storage of acid gas has been identified as a promising approach to reduce atmospheric carbon dioxide(CO_(2)),hydrogen sulfide(H_(2)S)and alleviate public concern resulting from the sour gas production.A good understanding of the relative permeability and capillary pressure characteristics is crucial to predict the process of acid gas injection and migration.The prediction of injection and redistribution of acid gas is important to determine storage capacity,formation pressure,plume extent,shape,and leakage potential.Herein,the existing experimental data and theoretical models were reviewed to gain a better understanding of the issue how the H_(2)S content affects gas density,gas viscosity,interfacial tension,wettability,relative permeability and capillary pressure characteristics of acid gas/brine/rock systems.The densities and viscosities of the acid gas with different H_(2)S mole fractions are both temperature-and pressure-dependent,which vary among the gas,liquid and supercritical phases.Water/acid gas interfacial tension decreases strongly with increasing H_(2)S content.For mica and clean quartz,water contact angle increases with increasing H_(2)S mole fraction.In particular,wettability reversal of mica to a H_(2)S-wet behavior occurs in the presence of dense H_(2)S.The capillary pressure increases with decreasing contact angle.At a given saturation,the relative permeability of a fluid is higher when the fluid is nonwetting.The capillary pressure decreases with decreasing interfacial tension at a given saturation.However,the existing datasets do not show a consistent link between capillary number and relative permeability.The capillary pressure decreases with increasing H_(2)S mole fraction.However,there is no consensus on the effect of the H_(2)S content on the relative permeability curves.This may be due to the limited availability of the relative permeability and capillary pressure data for acid gas/brine/rock systems;thus,more experimental measurements are required. 展开更多
关键词 Acid gas geological sequestration Relative permeability Capillary pressure H_(2)S content wettability interfacial tension
下载PDF
Tuning electronic properties of cobalt phthalocyanines for oxygen reduction and evolution reactions
3
作者 Jianlin Jiang Zhen Liu +10 位作者 Shuaijun Pan Xinnian Xia Bing Qin Yang Hu Xuxu Wang Jiamin Lan Yu Gu Encai Ou Weijian Xu Joseph J.Richardson Rui Guo 《Science China Chemistry》 SCIE EI CSCD 2024年第1期398-407,共10页
Metal–phthalocyanines are a class of catalytically active materials promising in energy conversion and storage fields(e.g.,electrocatalysis).However,understanding and controlling the electrochemical properties in met... Metal–phthalocyanines are a class of catalytically active materials promising in energy conversion and storage fields(e.g.,electrocatalysis).However,understanding and controlling the electrochemical properties in metal-phthalocyanine systems is challenging.Herein,we elucidate the electrocatalytic origins of a series of cobalt-phthalocyanine molecular catalysts and finetune their electronic properties at the atomic level,both experimentally and computationally.The interactions between the cobalt center and the local coordination environment are regulated by introducing either electron-donating or electron-withdrawing groups on the phthalocyanine ligand,and the spin-orbit splitting of cobalt is increased by~0.15 eV compared with the nonsubstituted ligand.Specifically,the aminated cobalt phthalocyanine-based electrocatalysts exhibit low free energies in the ratedetermining steps of the oxygen reduction(-1.68 eV)and oxygen evolution reactions(0.37 eV).This contributes to the high electrocatalytic activity(e.g.,a halfwave potential of 0.84 V and an overpotential of 0.30 V at 10 mAcm^(-2)),featuring a high selectivity of a four-electron pathway(i.e.,a negligible by-product of hydrogen peroxide).These catalysts also exhibit exceptional kinetic current density(Tafel slope of 100 mV dec^(-1))in oxygen reduction reactions,in addition to a superior power density(158 mWcm^(-2))and a high cycling stability(>1,300 cycles)in Zn-air batteries,outperforming the commercial Pt/C and/or RuO2counterparts. 展开更多
关键词 interfacial wettability molecular catalysts carbon nanotubes density functional theory ELECTROCHEMISTRY
原文传递
Flexible,solid-state,fiber-network-reinforced composite solid electrolyte for long lifespan solid lithium-sulfurized polyacrylonitrile battery 被引量:1
4
作者 Shiqiang Luo Enyou Zhao +4 位作者 Yixuan Gu Nagahiro Saito Zhengxi Zhang Li Yang Shin-ichi Hirano 《Nano Research》 SCIE EI CSCD 2022年第4期3290-3298,共9页
Solid lithium-sulfur batteries(SLSBs)show potential for practical application due to their possibility for high energy density.However,SLSBs still face tough challenges such as the large interface impedance and lithiu... Solid lithium-sulfur batteries(SLSBs)show potential for practical application due to their possibility for high energy density.However,SLSBs still face tough challenges such as the large interface impedance and lithium dendrite formation.Herein,a highperformance SLSB is demonstrated by using a fiber network reinforced Li_(6.75)La_(3)Zr_(1.75)Ta_(0.25)O_(12)(LLZTO)based composite solid electrolyte(CSE)in combination with sulfurized polyacrylonitrile(SPAN)cathode.The CSE consisting of an electrospun polyimide(PI)film,LLZTO ionically conducting filler and polyacrylonitrile(PAN)matrix,which is named as PI-PAN/LLZTO CSE,possesses high room-temperature ionic conductivity(2.75×10^(-4)S/cm),high Li^(+)migration number(tLi+)of 0.67 and good interfacial wettability.SPAN is utilized due to its unique electrochemical properties:reasonable electronic conductivity and no polysulfides shuttle effect.The CSE enables a highly stable Li plating/stripping cycle for over 600 h and good rate performance.Moreover,the assembled SLSB exhibits good cycle performance of accomplishing 120 cycles at 0.2 C with the capacity retention of 474 mAh/g,good rate properties and excellent long-term cycling stability with a high capacity retention of 86.49%from 15^(th)to 1,000^(th)cycles at 1.0 C.This work rationalizes our design concept and may guide the future development of SLSBs. 展开更多
关键词 solid lithium-sulfur battery composite solid electrolyte sulfurized polyacrylonitrile cathode interfacial wettability dendritefree
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部