To investigate the formation of internal cracks in GCrl 5 bearing steels during the soft reduction process in rectangular bloom con- tinuous casting, fully coupled thermomechanieal finite element models were developed...To investigate the formation of internal cracks in GCrl 5 bearing steels during the soft reduction process in rectangular bloom con- tinuous casting, fully coupled thermomechanieal finite element models were developed using the commercial software MSC.MARC, and microstructures and fractographs were also observed. With the finite element models, the contours of temperature, equivalent plastic strain, and equivalent vun Mises stress were simulated. It is observed that the fracture surfaces of internal cracks are covered by cleavage or quasi-cleavage facets. The region of internal cracks in the intergranular brittle fracture mode is in the mushy zone between the zero ductility temperature (ZDT) and the zero strength temperature (ZST). The simulated equivalent plastic strain in the crack region is 2.34%-2.45%, which is larger than the critical strain (0.4%-1.5%), and the equivalent von Mises stress is 1.84-5.05 MPa, which is within the range of criti- cal stress (3.9-7.2 MPa), thus resulting in the occurrence of internal cracks. Reducing the soft reduction amount from 3 to 2 mm can lower the stress under the critical value.展开更多
To investigate the formation of internal cracks in steel billets during soft reduction, fully coupled thermo-mechanical finite element models were developed using the commercial software ABAQUS, also casting and soft ...To investigate the formation of internal cracks in steel billets during soft reduction, fully coupled thermo-mechanical finite element models were developed using the commercial software ABAQUS, also casting and soft reduction tests were carried out in a laboratory strand casting machine. With the finite element models, the temperature distribution, the stress and strain states in the billet were calculated. The relation between internal cracks and equivalent plastic strain, as well as maximal principal stress was analyzed. The results indicate that tensile stresses can develop in the mushy zone during soft reduction and the equivalent strain nearby the zero ductility temperature (ZDT) increases with decreasing solid fraction. Internal cracks can be initiated when the accumulated strain exceeds the critical strain or the applied tensile stress exceeds the critical fracture stress during solidification.展开更多
In order to make clear the formation mechanism of centerline cracks incontinuously cast slabs, the form, distribution and other characteristics of the cracks wereanalyzed. The final solidification point, surface tempe...In order to make clear the formation mechanism of centerline cracks incontinuously cast slabs, the form, distribution and other characteristics of the cracks wereanalyzed. The final solidification point, surface temperature of the slabs and strain in solidifyingshell were investigated. The results were that: (1) Five relatively low temperature zones exist onslab surface below the three water spraying nozzles and near the two edges, respectively, whichcorresponds to the places of centerline cracks and triangle-zone cracks. (2) Centerline cracks andtriangle-zone cracks occur because of weak secondary cooling, uneven cooling along slab width, andlarge variation of roll gap. (3) After minimizing the variation of roll gap and applying the newsecondary cooling pattern, the occurring frequency of centerline and triangle-zone cracks minimizesto zero.展开更多
The internal cracks in continuously cast slabs are attributed to the excessive tensile strain occurring at the solidifying frontduring the continuous casting process. Based on the understanding, a model for diagnosing...The internal cracks in continuously cast slabs are attributed to the excessive tensile strain occurring at the solidifying frontduring the continuous casting process. Based on the understanding, a model for diagnosing the formation of the internal cracks was established, in which the strains at the solidifying front caused by' bulging, straightening or unbending, and roll misalignment were calculated and compared with a critical strain value to estimate whether the internal cracks form. Moreover, the established model was appliedto a real slab caster to reveal the distribution of the strains in casting direction and its effect on the internal cracks. It was proved that themodel was reliable and useful for optimizing the operation of continuous casting.展开更多
Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve...Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.展开更多
The fracture of materials under the action of compressive forces, directed along cracks which are parallel in plane can,lot be described within the framework of the linear fracture mechanics. The criteria of fracture ...The fracture of materials under the action of compressive forces, directed along cracks which are parallel in plane can,lot be described within the framework of the linear fracture mechanics. The criteria of fracture of the Griffith-Irvin or COC type, used in classical linear fracture mechanics, are not applicable in this problem, since these forces have no influence on stress intensity coefficients and on values of cracks opening([1, 2]). The problems of such a class may be described only by using new approaches. One of possible approaches is presented by the first author, which involves using linearized relations, derived from exact non-linear equations of deformable solid body mechanics([3, 4, 5]). It should be remarked here that this approach has been widely used in problems of deformable bodies stability. As a criterion of the initiation of fracture the criterion of local instability near defects of the crack type is used. In these cases the process of loss of stability initiates the fracture process.展开更多
The internal micro cracks with the critical length about 30?μm and thickness less than 1?μm were introduced into the pure titanium samples by uniaxial tension compression low cycle fatigue method. The experimental r...The internal micro cracks with the critical length about 30?μm and thickness less than 1?μm were introduced into the pure titanium samples by uniaxial tension compression low cycle fatigue method. The experimental results indicate that the internal fatigue micro crack clearly evolves from the original penny shaped crack into a string of spherical voids in the longitudinal section plane of the fatigue sample after the vacuum diffusive healing at the high temperature. The quantitative relationship between the radius and the spacing of spherical voids depends on the crack position (within grains, on grain boundaries or transgranular sites) and its orientations within the grain. The diffusive healing, the related thermodynamics and mechanism, and the effect of the surface tension anisotropy on the relationship between void diameter and void spacing are also discussed.展开更多
Fractures are widely present in geomaterials of civil engineering and deep underground engineering.Given that geomaterials are usually brittle,the fractures can significantly affect the evaluation of underground engin...Fractures are widely present in geomaterials of civil engineering and deep underground engineering.Given that geomaterials are usually brittle,the fractures can significantly affect the evaluation of underground engineering construction safety and the early warning of rock failure.However,the crack initiation and propagation in brittle materials under composite loading remain unknown so far.In this study,a three-dimensional internal laser-engraved cracking technique was applied to produce internal cracks without causing damage to the surfaces.The uniaxial compression tests were performed on a brittle material with internal cracks to investigate the propagation of these internal cracks at different dip angles under compression and shear.The test results show that the wing crack propagation mainly occurs in the specimen with an inclined internal crack,which is a mixed-ModeⅠ–Ⅱ–Ⅲfracture;in contrast,ModeⅠfracture is present in the specimen with a vertical internal crack.The fractography characteristics of ModeⅢfracture display a lance-like pattern.The fracture mechanism in the brittle material under compression is that the internal wing cracks propagate to the ends of the whole sample and cause the final failure.The initial deflection angle of the wing crack is determined by the participation ratio of stress intensity factors KII to KI at the tip of the internal crack.展开更多
In view of the periodic bending deformation of solid-liquid interface in the solidification process for continuous casting slab, the variation of temperature gradient and dendritic spacing in the front edge of the sol...In view of the periodic bending deformation of solid-liquid interface in the solidification process for continuous casting slab, the variation of temperature gradient and dendritic spacing in the front edge of the solid-liquid interface, and the nucleation and propagation process of crack were studied. It is shown that the bending deformation of the interface results in the temperature field change in the front edge of solid-liquid interface, and the occurrence of temperature gradient along drawing direction results in the growth of secondary dendrites. The initial crack formed during the middle and final stage of solidification may extend to the surface of the casting slab and become an internal crack. The results of the theoretical analysis are basically in agreement with that of the experiment.展开更多
Ultrasonic fracturing(UF)can be used to form crack networks for oil or gas in the mining industry and hard rock excavation.In this paper,the three-dimensional internal laser-engraved crack method(3DILC)is introduced t...Ultrasonic fracturing(UF)can be used to form crack networks for oil or gas in the mining industry and hard rock excavation.In this paper,the three-dimensional internal laser-engraved crack method(3DILC)is introduced to make penny-shaped internal crack within the samples without any damage to the surfaces.Physical experiments were performed on the transparent samples with internal cracks at different depths.The macro-and micro-fracture fractography characteristics were focused on and analyzed in details.Based on fractography,the mechanisms of the UF were revealed.The propagation paths of cracks of different depths were simulated based on the Paris fatigue model and compared with experimental results.The results show that the 3D-ILC method is a powerful tool for the experimental research on the internal crack propagation in the UF.Under the action of ultrasonic field,fractography shows the characteristics of beach marks,lance-like pattern,rime-like pattern and glass powder.It can be judged that the mechanisms of UF include high cycle fatigue fracture,shear fracture,and friction.The results of the numerical simulation using the Paris fatigue model are consistent with the experimental results.展开更多
In this paper the writer uses Muskhelishvili single-layer potential function solution and single crack solution for the torsion problem of a circular cylinder to discuss the torsion problem of a composite cylinder wit...In this paper the writer uses Muskhelishvili single-layer potential function solution and single crack solution for the torsion problem of a circular cylinder to discuss the torsion problem of a composite cylinder with an internal crack, and the problem is reduced to -a set of mixed-type integral equation with generalized Cauchy-kernel. Then, by using the integration formula of Gauss-Jacobi, the numerical method is established and several numerical examples are calculated. The torsional rigidity and the stress intensity factors are obtained. The results of these examples fit the results obtained by the previous papers better.展开更多
The hatches for inspecting are usually designed with elliptical holes in airplane structures, so computation of the stress intensity factor of three dimensional crack at elliptical holes is pivotal for damage toleranc...The hatches for inspecting are usually designed with elliptical holes in airplane structures, so computation of the stress intensity factor of three dimensional crack at elliptical holes is pivotal for damage tolerance analysis of these structures. In this paper, weight function is derived for a two dimensional through cracks at elliptical holes by applying a compounding method. Stress intensity factor formulas for an internal surface semi-elliptical crack in elliptical holes are obtained wing the three dimensional weight function method. Stress intensity factors for an internal surface semi-elliptical crack in elliptical holes under remote tension are computed. At the same time, research on how radius of curvature for elliptical holes affect stress intensity factors was conducted. Stress intensity factors decrease when radius of curvature increases. Some results and conclusions which are of practical value are given.展开更多
A simultaneous experimental and numerical study on crack propagation in the pre-cracked beams specimens(concrete-like materials) is carried out using three-point bending flexural test. The crack propagation and coales...A simultaneous experimental and numerical study on crack propagation in the pre-cracked beams specimens(concrete-like materials) is carried out using three-point bending flexural test. The crack propagation and coalescence paths of internal cracks in side beam specimens are experimentally studied by inserting double internal cracks. The effects of crack positions on the fracturing path in the bridge areas of the double cracked beam specimens are also studied. It has been observed that the breaking of concrete-like cracked beams specimens occurs mainly by the propagation of wing cracks emanating from the tips of the pre-existing cracks in the numerical and experimental analyses, respectively. The same specimens are numerically simulated by an indirect boundary element method(IBEM) known as displacement discontinuity method(DDM) using higher displacement discontinuity. These numerical results are compared with the existing experimental results. This comparison illustrates the higher accuracy of the results obtained by the indirect boundary element method by using only a small number of elements compared with the discrete element method(PFC2D code).展开更多
Center segregation is the main reason for cup fracture of high-carbon wire rod during drawing. Therefore, to continuously produce cast billets with very low center segregation is an important objective. The soft reduc...Center segregation is the main reason for cup fracture of high-carbon wire rod during drawing. Therefore, to continuously produce cast billets with very low center segregation is an important objective. The soft reduction technology is considered to be an effective method to minimize center segregation. To elucidate the effect of soft reduction on the internal quality of high-carbon steel billets, soft reduction was applied with different solid fractions in the core area of billets in a laboratory casting machine. A coupled temperature/displacement finite element model was developed to calculate the solid fraction using the commercial software ABAQUS. Center segregation, center porosity, homogeneity of elements, and equiaxed crystal zone were obviously improved by applying soft reduction, especially when the solid fraction was less than 1.0. The optimal results were obtained when the solid fraction was approximately 0.9.展开更多
Two-dimension unsteady heat transfer model was applied to obtain the surfacetemperature and the shell thickness of continuous casting slabs during the process ofsolidification. On the basis of which, the mathematical ...Two-dimension unsteady heat transfer model was applied to obtain the surfacetemperature and the shell thickness of continuous casting slabs during the process ofsolidification. On the basis of which, the mathematical model of strain at the interface of solidand liquid steel was set up. Through which, the strain in the solidifying shell under normal andabnormal operation conditions was gained. The results indicate that the strain is small under thenormal operation conditions and the internal crack never happens. However, when the variation of theroll gap is above 2 mm, the strain caused by which is greater than that caused by bulging.Furthermore, the total strain exceeds the critical one and the internal crack is the result. So itis of great importance to maintain the fine state of continuous casting machine to avoid theappearance of internal crack.展开更多
According to the two types of slab defects (surface crack and internal crack), a real-time slab quality diag nosis and analysis system named CISDI_SQDS ONLINE R2011 was developed based on heat transfer and solidific...According to the two types of slab defects (surface crack and internal crack), a real-time slab quality diag nosis and analysis system named CISDI_SQDS ONLINE R2011 was developed based on heat transfer and solidifica tion simulation, stress and strain calculation as well as metallurgical process analysis about continuous casting, com- bined with expert knowledge database for specific casting events. The respective crack formation indexes were intro duced as the theoretical reference data for slab quality level evaluation. Meanwhile, both the quality loss factors relat ed to casting metallurgical rules and the adjusting factors related to casting events were taken into full consideration, which was integrated organically with theoretical analysis and expert system. The system can be widely used as an important theoretical tool for prediction and control of slab quality in slab continuous casting process.展开更多
基金financially supported by the Key Science and Technology Program of Liaoning Province, China (No.2007414003)
文摘To investigate the formation of internal cracks in GCrl 5 bearing steels during the soft reduction process in rectangular bloom con- tinuous casting, fully coupled thermomechanieal finite element models were developed using the commercial software MSC.MARC, and microstructures and fractographs were also observed. With the finite element models, the contours of temperature, equivalent plastic strain, and equivalent vun Mises stress were simulated. It is observed that the fracture surfaces of internal cracks are covered by cleavage or quasi-cleavage facets. The region of internal cracks in the intergranular brittle fracture mode is in the mushy zone between the zero ductility temperature (ZDT) and the zero strength temperature (ZST). The simulated equivalent plastic strain in the crack region is 2.34%-2.45%, which is larger than the critical strain (0.4%-1.5%), and the equivalent von Mises stress is 1.84-5.05 MPa, which is within the range of criti- cal stress (3.9-7.2 MPa), thus resulting in the occurrence of internal cracks. Reducing the soft reduction amount from 3 to 2 mm can lower the stress under the critical value.
基金This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Centre (SFB) 289.
文摘To investigate the formation of internal cracks in steel billets during soft reduction, fully coupled thermo-mechanical finite element models were developed using the commercial software ABAQUS, also casting and soft reduction tests were carried out in a laboratory strand casting machine. With the finite element models, the temperature distribution, the stress and strain states in the billet were calculated. The relation between internal cracks and equivalent plastic strain, as well as maximal principal stress was analyzed. The results indicate that tensile stresses can develop in the mushy zone during soft reduction and the equivalent strain nearby the zero ductility temperature (ZDT) increases with decreasing solid fraction. Internal cracks can be initiated when the accumulated strain exceeds the critical strain or the applied tensile stress exceeds the critical fracture stress during solidification.
文摘In order to make clear the formation mechanism of centerline cracks incontinuously cast slabs, the form, distribution and other characteristics of the cracks wereanalyzed. The final solidification point, surface temperature of the slabs and strain in solidifyingshell were investigated. The results were that: (1) Five relatively low temperature zones exist onslab surface below the three water spraying nozzles and near the two edges, respectively, whichcorresponds to the places of centerline cracks and triangle-zone cracks. (2) Centerline cracks andtriangle-zone cracks occur because of weak secondary cooling, uneven cooling along slab width, andlarge variation of roll gap. (3) After minimizing the variation of roll gap and applying the newsecondary cooling pattern, the occurring frequency of centerline and triangle-zone cracks minimizesto zero.
文摘The internal cracks in continuously cast slabs are attributed to the excessive tensile strain occurring at the solidifying frontduring the continuous casting process. Based on the understanding, a model for diagnosing the formation of the internal cracks was established, in which the strains at the solidifying front caused by' bulging, straightening or unbending, and roll misalignment were calculated and compared with a critical strain value to estimate whether the internal cracks form. Moreover, the established model was appliedto a real slab caster to reveal the distribution of the strains in casting direction and its effect on the internal cracks. It was proved that themodel was reliable and useful for optimizing the operation of continuous casting.
基金the financial support provided by USDOT Pipeline and Hazardous Materials Safety Administration (PHMSA)through the Competitive Academic Agreement Program (CAAP)。
文摘Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.
文摘The fracture of materials under the action of compressive forces, directed along cracks which are parallel in plane can,lot be described within the framework of the linear fracture mechanics. The criteria of fracture of the Griffith-Irvin or COC type, used in classical linear fracture mechanics, are not applicable in this problem, since these forces have no influence on stress intensity coefficients and on values of cracks opening([1, 2]). The problems of such a class may be described only by using new approaches. One of possible approaches is presented by the first author, which involves using linearized relations, derived from exact non-linear equations of deformable solid body mechanics([3, 4, 5]). It should be remarked here that this approach has been widely used in problems of deformable bodies stability. As a criterion of the initiation of fracture the criterion of local instability near defects of the crack type is used. In these cases the process of loss of stability initiates the fracture process.
文摘The internal micro cracks with the critical length about 30?μm and thickness less than 1?μm were introduced into the pure titanium samples by uniaxial tension compression low cycle fatigue method. The experimental results indicate that the internal fatigue micro crack clearly evolves from the original penny shaped crack into a string of spherical voids in the longitudinal section plane of the fatigue sample after the vacuum diffusive healing at the high temperature. The quantitative relationship between the radius and the spacing of spherical voids depends on the crack position (within grains, on grain boundaries or transgranular sites) and its orientations within the grain. The diffusive healing, the related thermodynamics and mechanism, and the effect of the surface tension anisotropy on the relationship between void diameter and void spacing are also discussed.
基金National Natural Science Foundation of China,Grant/Award Numbers:51409170,51739008。
文摘Fractures are widely present in geomaterials of civil engineering and deep underground engineering.Given that geomaterials are usually brittle,the fractures can significantly affect the evaluation of underground engineering construction safety and the early warning of rock failure.However,the crack initiation and propagation in brittle materials under composite loading remain unknown so far.In this study,a three-dimensional internal laser-engraved cracking technique was applied to produce internal cracks without causing damage to the surfaces.The uniaxial compression tests were performed on a brittle material with internal cracks to investigate the propagation of these internal cracks at different dip angles under compression and shear.The test results show that the wing crack propagation mainly occurs in the specimen with an inclined internal crack,which is a mixed-ModeⅠ–Ⅱ–Ⅲfracture;in contrast,ModeⅠfracture is present in the specimen with a vertical internal crack.The fractography characteristics of ModeⅢfracture display a lance-like pattern.The fracture mechanism in the brittle material under compression is that the internal wing cracks propagate to the ends of the whole sample and cause the final failure.The initial deflection angle of the wing crack is determined by the participation ratio of stress intensity factors KII to KI at the tip of the internal crack.
基金supported by the National Natural Science Foundation of China(No.50374043).
文摘In view of the periodic bending deformation of solid-liquid interface in the solidification process for continuous casting slab, the variation of temperature gradient and dendritic spacing in the front edge of the solid-liquid interface, and the nucleation and propagation process of crack were studied. It is shown that the bending deformation of the interface results in the temperature field change in the front edge of solid-liquid interface, and the occurrence of temperature gradient along drawing direction results in the growth of secondary dendrites. The initial crack formed during the middle and final stage of solidification may extend to the surface of the casting slab and become an internal crack. The results of the theoretical analysis are basically in agreement with that of the experiment.
基金supported by the National Natural Science Foundation of China(Nos.51739008 and 41831281)the Natural Science Foundation of Jiangsu Province(No.BK20171130).
文摘Ultrasonic fracturing(UF)can be used to form crack networks for oil or gas in the mining industry and hard rock excavation.In this paper,the three-dimensional internal laser-engraved crack method(3DILC)is introduced to make penny-shaped internal crack within the samples without any damage to the surfaces.Physical experiments were performed on the transparent samples with internal cracks at different depths.The macro-and micro-fracture fractography characteristics were focused on and analyzed in details.Based on fractography,the mechanisms of the UF were revealed.The propagation paths of cracks of different depths were simulated based on the Paris fatigue model and compared with experimental results.The results show that the 3D-ILC method is a powerful tool for the experimental research on the internal crack propagation in the UF.Under the action of ultrasonic field,fractography shows the characteristics of beach marks,lance-like pattern,rime-like pattern and glass powder.It can be judged that the mechanisms of UF include high cycle fatigue fracture,shear fracture,and friction.The results of the numerical simulation using the Paris fatigue model are consistent with the experimental results.
基金P.H.D.Foundation of the State Education Commision of China
文摘In this paper the writer uses Muskhelishvili single-layer potential function solution and single crack solution for the torsion problem of a circular cylinder to discuss the torsion problem of a composite cylinder with an internal crack, and the problem is reduced to -a set of mixed-type integral equation with generalized Cauchy-kernel. Then, by using the integration formula of Gauss-Jacobi, the numerical method is established and several numerical examples are calculated. The torsional rigidity and the stress intensity factors are obtained. The results of these examples fit the results obtained by the previous papers better.
文摘The hatches for inspecting are usually designed with elliptical holes in airplane structures, so computation of the stress intensity factor of three dimensional crack at elliptical holes is pivotal for damage tolerance analysis of these structures. In this paper, weight function is derived for a two dimensional through cracks at elliptical holes by applying a compounding method. Stress intensity factor formulas for an internal surface semi-elliptical crack in elliptical holes are obtained wing the three dimensional weight function method. Stress intensity factors for an internal surface semi-elliptical crack in elliptical holes under remote tension are computed. At the same time, research on how radius of curvature for elliptical holes affect stress intensity factors was conducted. Stress intensity factors decrease when radius of curvature increases. Some results and conclusions which are of practical value are given.
文摘A simultaneous experimental and numerical study on crack propagation in the pre-cracked beams specimens(concrete-like materials) is carried out using three-point bending flexural test. The crack propagation and coalescence paths of internal cracks in side beam specimens are experimentally studied by inserting double internal cracks. The effects of crack positions on the fracturing path in the bridge areas of the double cracked beam specimens are also studied. It has been observed that the breaking of concrete-like cracked beams specimens occurs mainly by the propagation of wing cracks emanating from the tips of the pre-existing cracks in the numerical and experimental analyses, respectively. The same specimens are numerically simulated by an indirect boundary element method(IBEM) known as displacement discontinuity method(DDM) using higher displacement discontinuity. These numerical results are compared with the existing experimental results. This comparison illustrates the higher accuracy of the results obtained by the indirect boundary element method by using only a small number of elements compared with the discrete element method(PFC2D code).
文摘Center segregation is the main reason for cup fracture of high-carbon wire rod during drawing. Therefore, to continuously produce cast billets with very low center segregation is an important objective. The soft reduction technology is considered to be an effective method to minimize center segregation. To elucidate the effect of soft reduction on the internal quality of high-carbon steel billets, soft reduction was applied with different solid fractions in the core area of billets in a laboratory casting machine. A coupled temperature/displacement finite element model was developed to calculate the solid fraction using the commercial software ABAQUS. Center segregation, center porosity, homogeneity of elements, and equiaxed crystal zone were obviously improved by applying soft reduction, especially when the solid fraction was less than 1.0. The optimal results were obtained when the solid fraction was approximately 0.9.
文摘Two-dimension unsteady heat transfer model was applied to obtain the surfacetemperature and the shell thickness of continuous casting slabs during the process ofsolidification. On the basis of which, the mathematical model of strain at the interface of solidand liquid steel was set up. Through which, the strain in the solidifying shell under normal andabnormal operation conditions was gained. The results indicate that the strain is small under thenormal operation conditions and the internal crack never happens. However, when the variation of theroll gap is above 2 mm, the strain caused by which is greater than that caused by bulging.Furthermore, the total strain exceeds the critical one and the internal crack is the result. So itis of great importance to maintain the fine state of continuous casting machine to avoid theappearance of internal crack.
文摘According to the two types of slab defects (surface crack and internal crack), a real-time slab quality diag nosis and analysis system named CISDI_SQDS ONLINE R2011 was developed based on heat transfer and solidifica tion simulation, stress and strain calculation as well as metallurgical process analysis about continuous casting, com- bined with expert knowledge database for specific casting events. The respective crack formation indexes were intro duced as the theoretical reference data for slab quality level evaluation. Meanwhile, both the quality loss factors relat ed to casting metallurgical rules and the adjusting factors related to casting events were taken into full consideration, which was integrated organically with theoretical analysis and expert system. The system can be widely used as an important theoretical tool for prediction and control of slab quality in slab continuous casting process.