期刊文献+
共找到86篇文章
< 1 2 5 >
每页显示 20 50 100
一种灰色关联分析优化ICEEMDAN的VP倾斜仪信号降噪模型
1
作者 庞聪 孙海洋 +3 位作者 刘天龙 姚瑶 李忠亚 马武刚 《大地测量与地球动力学》 CSCD 北大核心 2024年第6期654-660,共7页
VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行I... VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行ICCEMDAN处理,得到若干个固有模态函数(IMF),并依次排列与标记;然后基于这些IMF分别计算相关系数、互信息、R^(2)、Adj-R^(2)、MSE、SSE、RMSE、MAE、MAPE、样本熵等10个评价指标值,构建IMF可信度评价指标矩阵;最后借助灰色关联分析(GRA)计算各评价指标与不同IMF之间的关联系数和关联度,依据关联度大小对各个IMF进行排序,将排名靠前的IMF进行线性重构,即可完成信号降噪。仿真去噪实验和实测去噪实验均表明,GRA-ICEEMDAN模型优于卡尔曼滤波、70阶低通FIR滤波、Savitzky-Golay等经典降噪模型,能显著区分噪声成分和有效成分,原始信号分解后的重构误差与信号损失极小,可推广至其他仪器的复杂信号降噪中。 展开更多
关键词 VP倾斜仪 信号降噪 改进的自适应噪声完备集合经验模态分解 灰色关联分析 固有模态函数 样本熵 互信息
下载PDF
基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测
2
作者 朱欢欢 迟玉伦 +2 位作者 张梦梦 熊力 应晓昂 《金刚石与磨料磨具工程》 CAS 北大核心 2024年第1期73-84,共12页
针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测。首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感... 针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测。首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感器信号进行分解获得各固有模态函数(intrinsic mode function,IMF),剔除“虚假分量”后计算表征轧辊磨削颤振的时域特征。然后,利用小波包能量熵对声发射传感器信号求解频率段节点能量熵值,获得表征轧辊磨削颤振的频域特征。最后,将上述时频域特征降维后代入智能算法模型实现对轧辊磨削加工的在线预测。结果表明:LV-SVM模型的磨削颤振分类平均准确率达92.75%,模型平均响应时间为0.7765 s;验证了时频域特性的EMD和小波包能量熵方法的LV-SVM在线预测轧辊磨削颤振的有效性。 展开更多
关键词 轧辊磨削颤振 EMD分解 固有模态函数 小波包能量熵 最小二乘支持向量机
下载PDF
基于多尺度散布熵的磁声发射信号特征识别方法
3
作者 李梦俊 沈功田 +1 位作者 沈永娜 王强 《机电工程》 北大核心 2024年第1期158-165,共8页
在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测... 在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测实验平台,采集了Q345钢静载拉伸实验中0 MPa~400 MPa应力状态下的MAE信号;然后,采用变分模态分解方法,对磁声发射信号进行了自适应分解,生成了一系列从低频到高频分布的本征模态函数(IMF)分量;其次,计算了每个本征模态函数分量的散布熵值,构建了MAE信号的特征向量矩阵;最后,将特征向量矩阵输入到基于支持向量机建立的识别分类模型中,进行了信号的训练和识别。研究结果表明:使用基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法,能够自适应地实现MAE信号的多尺度化目的,并且准确地识别出不同应力状态下的信号特征,分类识别准确率高达95.3704%,验证了该方法的有效性;说明基于自适应多尺度散布熵和多分类支持向量机的信号特征识别方法能够快速且有效地识别不同应力状态,在信号特征识别方面具有较好的应用潜力。 展开更多
关键词 磁声发射 变分模态分解 散布熵 Q345钢 信号特征识别 本征模态函数
下载PDF
基于TVFEMD-IMF能量熵增量的桥梁监测数据降噪方法
4
作者 李双江 辛景舟 +3 位作者 蒋黎明 刘水康 巴建明 周建庭 《振动.测试与诊断》 EI CSCD 北大核心 2024年第1期178-185,206,共9页
针对桥梁监测数据受多重噪声干扰、影响结构真实响应获取的问题,提出了一种基于时变滤波经验模态分解(time-varying filtering empirical mode decomposition,简称TVFEMD)和本征模函数(intrinsic mode function,简称IMF)能量熵增量的桥... 针对桥梁监测数据受多重噪声干扰、影响结构真实响应获取的问题,提出了一种基于时变滤波经验模态分解(time-varying filtering empirical mode decomposition,简称TVFEMD)和本征模函数(intrinsic mode function,简称IMF)能量熵增量的桥梁监测数据降噪方法。首先,利用TVFEMD分解桥梁原始监测数据,得到多个子序列;其次,采用IMF能量熵增量确定多个子序列中的有效子序列;然后,划分子序列中的结构响应分量和噪声分量,对结构响应分量重组实现监测数据降噪;最后,利用平均绝对误差(mean absolute error,简称MAE)、均方根误差(root mean squared error,简称RMSE)和信噪比(signal-noise ratio,简称SNR)对不同方法的降噪效果进行评价。仿真算例和工程实例结果表明:TVFEMD相比经验模态分解(empirical mode decomposition,简称EMD),有效解决了模态混叠问题;TVFEMD结合IMF能量熵增量方法,有效抑制了多重噪声影响,对结果精度有较大提升;与EMD-IMF能量熵增量和Kalman滤波降噪法相比,TVFEMD-IMF能量熵增量法所得到降噪信号的MAE和RMSE值分别提升了23%和21%以上,降噪效果更好,信噪比提升38%以上,抗噪性能更佳。 展开更多
关键词 桥梁 健康监测 降噪 时变滤波经验模态分解 本征模函数能量熵增量
下载PDF
基于ICEEMDAN与样本熵的脑血氧信号去噪方法
5
作者 曹焱 赵斌 +3 位作者 邢志明 金子豪 董祥美 高秀敏 《电子科技》 2024年第6期44-50,共7页
人体生理活动和随机噪声都会对脑血氧检测数据精度产生影响,为提高测量精度,需解决信号采集时遇到的噪声干扰。文中提出一种利用改进的具备自适应噪声的完全集成经验模态分解(Improved Complete Empirical Mode Decomposition with Adap... 人体生理活动和随机噪声都会对脑血氧检测数据精度产生影响,为提高测量精度,需解决信号采集时遇到的噪声干扰。文中提出一种利用改进的具备自适应噪声的完全集成经验模态分解(Improved Complete Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)与样本熵(Sample Entropy,SampEn)相结合的脑血氧信号去噪方法。利用ICEEMDAN对脑血氧信号进行模态分解,从而获得不同时间复杂度的固有模态函数(Intrinsic Mode Function,IMF)分量。通过样本熵值判断各IMF分量的时间复杂度,依据IMF分量的样本熵值选择合适的分量重构信号,从而去除原始信号的噪声。实验结果表明,所提方法可以有效去除原始脑血氧信号中的噪声,实现采集数据的精度提升,进而提高脑血氧检测精度。 展开更多
关键词 脑血氧 精度 ICEEMDAN 样本熵 固有模态函数 重构信号 血氧信号 噪声去除
下载PDF
基于DIGWO-VMD-CMPE的轴承故障识别方法
6
作者 辛昊 鲁玉军 朱轩逸 《机电工程》 CAS 北大核心 2024年第2期205-215,共11页
针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因... 针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因子a和个体狼ω位置更新的方法将灰狼优化算法(GWO)改进为DIGWO,并利用DIGWO算法的自适应性优化VMD分解,得到了多个本征模态函数(IMFs);然后,利用复合多尺度排列熵计算IMFs的特征值,选取适当维数的特征,构建了故障特征向量;最后,利用DIGWO算法优化支持向量机(SVM)的惩罚系数C和径向基函数g,建立了DIGWO-SVM滚动轴承故障诊断分类器,并利用滚动轴承的振动数据验证了算法的有效性。研究结果表明:基于CMPE的DIGWO-SVM滚动轴承故障诊断方法能够有效地识别轴承的运行状况,识别准确率达到了99.42%,相较于PSO-SVM、SSA-SVM方法提高了7.75%、1.68%,证明了该方法的分类性能在滚动轴承故障诊断中更具优势。 展开更多
关键词 基于维度学习的改进灰狼优化算法 变分模态分解 复合多尺度排列熵 支持向量机 本征模态函数 基于维度学习的狩猎
下载PDF
机舱式激光雷达测风仪传动齿轮机械故障诊断研究
7
作者 马骁 韦存海 +2 位作者 李跃朋 赵亮 焦波 《机械与电子》 2024年第8期76-80,共5页
提出了机舱式激光雷达测风仪传动齿轮机械故障诊断方法。利用最小熵反褶积(MED)对齿轮的振动信号去噪处理,利用集成经验模态分解(EEMD)得到齿轮信号的内涵模态(IMF)分量,并根据IMF能量和齿轮峭度建立齿轮故障特征向量,将特征向量输入到... 提出了机舱式激光雷达测风仪传动齿轮机械故障诊断方法。利用最小熵反褶积(MED)对齿轮的振动信号去噪处理,利用集成经验模态分解(EEMD)得到齿轮信号的内涵模态(IMF)分量,并根据IMF能量和齿轮峭度建立齿轮故障特征向量,将特征向量输入到最小二乘支持向量机(least squares support vector machine,LSSVM)中,完成传动齿轮机械故障的诊断。实验结果表明,该方法的齿轮故障诊断时间短,根据迭代次数的增加,误差率可控制在3%以下。 展开更多
关键词 齿轮故障诊断 最小熵反褶积 本征模式分量能量 峭度 最小二乘支持向量机
下载PDF
基于自适应投影多元经验模态分解的电力系统强迫振荡源定位 被引量:5
8
作者 姜涛 刘博涵 +1 位作者 李雪 李国庆 《电工技术学报》 EI CSCD 北大核心 2023年第13期3527-3538,共12页
近年来,电力系统强迫振荡在电网中频繁发生,严重威胁到电网的安全稳定运行,快速、准确地定位强迫振荡源对抑制强迫振荡具有重要意义,但现有方法在分解具有高差异度多通道广域量测信息时难以准确提取强迫振荡模式分量,严重影响到强迫振... 近年来,电力系统强迫振荡在电网中频繁发生,严重威胁到电网的安全稳定运行,快速、准确地定位强迫振荡源对抑制强迫振荡具有重要意义,但现有方法在分解具有高差异度多通道广域量测信息时难以准确提取强迫振荡模式分量,严重影响到强迫振荡源定位精度。为此,该文提出一种基于自适应投影多元经验模态分解(APIT-MEMD)的强迫振荡源定位方法。该方法首先采用APIT-MEMD通过构建自适应投影方向向量,实现对发电机多通道广域量测信息的同步分解,分离出表征不同振荡模式的固有模态函数(IMF)分量;然后,借助对数能量熵从众多IMF分量中提取出含强迫振荡模式的IMF分量;在此基础上,根据提取出的强迫振荡IMF分量,计算各发电机的耗散能量流,根据耗散能量流实现强迫振荡源定位;最后,通过WECC 179节点测试系统仿真数据和实际电网同步相量测量装置(PMU)实测数据对所提方法进行分析、验证,结果验证了所提方法的准确性和实用性。 展开更多
关键词 电力系统 强迫振荡 振荡源定位 自适应投影多元经验模态分解 固有模态函数 耗散能量流
下载PDF
基于参数优化的VMD与TEO融合的微电网电能质量检测方法 被引量:4
9
作者 王玉梅 郑义 《电气工程学报》 CSCD 2023年第2期164-173,共10页
针对变分模态分解(Variational mode decomposition,VMD)检测微电网中多类电能质量扰动信号时,其实时性差及多类信号难以统一处理的问题,提出一种参数优化的VMD与Teager能量算子(Teager energy operator,TEO)融合的微电网电能质量扰动... 针对变分模态分解(Variational mode decomposition,VMD)检测微电网中多类电能质量扰动信号时,其实时性差及多类信号难以统一处理的问题,提出一种参数优化的VMD与Teager能量算子(Teager energy operator,TEO)融合的微电网电能质量扰动检测方法。针对VMD方法参数难确定的问题,利用天牛须搜索(Beetleantennaesearch,BAS)对VMD方法的最佳参数进行优化搜索。搜索过程以VMD分解后各本征模函数的包络熵极小值与VMD迭代次数的结合作为适应度函数。根据搜索结果设定VMD方法的最佳分解层数K和惩罚因子α,并运用参数优化VMD对扰动信号进行分解。针对扰动信号经分解后本征模函数的筛选问题,以包络熵为指标,选取包络熵较小值的本征模函数进行TEO解调分析,提取扰动信号的特征信息。仿真结果表明,融合算法能实现对微电网电能质量扰动的准确检测,并具有良好的抗噪性。 展开更多
关键词 变分模态分解 天牛须搜索 电能质量扰动 TEAGER能量算子 包络熵 本征模函数
下载PDF
基于积分均值模式分解和固有模态函数样本熵的阵发性房颤识别
10
作者 卢莉蓉 牛晓东 +1 位作者 王鉴 张旭 《中国生物医学工程学报》 CAS CSCD 北大核心 2023年第6期668-676,共9页
针对阵发性房颤(PAF)发作持续时间较短难以捕捉,且现有识别算法抗噪性能较差易导致误检、漏检等问题,本研究提出一种基于积分均值模式分解(IMMD)和固有模态函数样本熵(IMFSE)的PAF识别方法。首先,对时长为20 min的心率变异性(HRV)信号... 针对阵发性房颤(PAF)发作持续时间较短难以捕捉,且现有识别算法抗噪性能较差易导致误检、漏检等问题,本研究提出一种基于积分均值模式分解(IMMD)和固有模态函数样本熵(IMFSE)的PAF识别方法。首先,对时长为20 min的心率变异性(HRV)信号片段进行IMMD分解得到一系列固有模态函数(IMF)分量,并计算IMFSE;然后,通过对IMFSE结果进行统计分析选取PAF识别的特征量;最后,利用支持向量机与交叉验证完成PAF识别。从PAF Prediction Challenge Database(AFPDB)数据库提供的正常受试者、PAF发作与远离PAF发作受试者心电信号中,分别获取25段时长为20 min的HRV信号片段,构成正常组、PAF发作组与PAF未发作组。通过对这75段HRV信号片段的实验发现:利用本方法进行PAF识别,识别准确率、敏感性、特异性分别可达到94%、96%、92%。所提出的PAF识别算法为进一步地快速准确自动检测PAF提供了参考,在可穿戴设备的长期自动检测识别PAF方面具有较大的应用前景。 展开更多
关键词 阵发性房颤 心率变异性分析 积分均值模式分解 固有模态函数样本熵 支持向量机
下载PDF
基于SGMD及LWOA-ELM的有限元模型修正
11
作者 赵宇 彭珍瑞 《计算力学学报》 CAS CSCD 北大核心 2023年第2期255-263,共9页
为得到待修正参数与结构响应之间的关系,提高模型修正的效率和精度,提出了一种基于辛几何模态分解(SGMD)和Lévy飞行鲸鱼优化算法(LWOA)优化极限学习机(ELM)的有限元模型修正(FEMU)方法。首先,对加速度频响函数(AFRF)进行SGMD分解,... 为得到待修正参数与结构响应之间的关系,提高模型修正的效率和精度,提出了一种基于辛几何模态分解(SGMD)和Lévy飞行鲸鱼优化算法(LWOA)优化极限学习机(ELM)的有限元模型修正(FEMU)方法。首先,对加速度频响函数(AFRF)进行SGMD分解,采用能量熵增量法确定重组辛几何分量(SGC)构成SGC矩阵。然后,利用LWOA对ELM的权值和阈值进行优化,提高ELM模型的预测效率,以LWOA-ELM为代理模型映射出待修正参数与SGC矩阵之间的关系。最后,以试验频响函数SGC矩阵与LWOA-ELM模型输出所得矩阵差值的F-范数最小为目标函数,结合LWOA求解待修正参数。算例分析表明,提出的方法用于有限元模型修正有较好的可行性和有效性。以SGC矩阵表征AFRF的修正方法,有较好的噪声鲁棒性;LWOA-ELM作为代理模型预测精度高,泛化能力强。 展开更多
关键词 模型修正 辛几何模态分解 能量熵增量法 极限学习机 鲸鱼优化算法
下载PDF
融合IMF能量矩和BiLSTMNN的水电机组振动故障诊断 被引量:3
12
作者 邓晓琴 瞿卫华 +4 位作者 陈金保 王云鹤 邹屹东 胡文庆 肖志怀 《水力发电学报》 CSCD 北大核心 2023年第10期86-95,共10页
针对水电机组振动信号存在非平稳和非线性,提出一种结合IMF能量矩和双向长短期记忆神经网络(bidirection long short term memory neural network,BiLSTMNN)的故障诊断方法。首先采用互补集合经验模态分解(complementary ensemble empir... 针对水电机组振动信号存在非平稳和非线性,提出一种结合IMF能量矩和双向长短期记忆神经网络(bidirection long short term memory neural network,BiLSTMNN)的故障诊断方法。首先采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)方法对正常和故障振动信号样本进行处理,得到频率各异的本征模态函数(intrinsic mode functions,IMF)和剩余分量。然后计算IMF能量矩,并将其作为故障特征。进一步,将故障特征作为输入、故障类别作为输出,训练BiLSTMNN得到水电机组故障识别器。结合故障识别器和实时振动信号IMF能量矩特征,即可识别水电机组运行状态为正常或具体故障类型。最后,结合转子实验台数据和实际电站机组样本数据,设计对比实验,验证了所提方法在挖掘信号特征方面的有效性及较高的故障诊断准确率。 展开更多
关键词 本征模态函数 能量矩 双向长短期记忆神经网络 故障诊断 水电机组振动信号
下载PDF
基于自适应滤波的无人机视觉导航误差补偿方法研究
13
作者 袁丁 王艳红 雒旭峰 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第6期193-198,共6页
为精确校准复杂自然环境下无人机的导航误差,提出基于自适应滤波的无人机视觉导航误差补偿方法。通过对视觉图像信号采取经验模态分解,构建无人机视觉导航图像的本征模函数,运用自适应滤波消除本征模函数噪声;采用长短期记忆网络构建无... 为精确校准复杂自然环境下无人机的导航误差,提出基于自适应滤波的无人机视觉导航误差补偿方法。通过对视觉图像信号采取经验模态分解,构建无人机视觉导航图像的本征模函数,运用自适应滤波消除本征模函数噪声;采用长短期记忆网络构建无人机视觉导航误差的线性预测模型;考虑空变性残留误差和运动误差,运用子图像划分策略将图像分割成若干个迭代块,引入校准比例指数,利用最小熵自聚焦法完成无人机视觉导航的误差补偿任务。研究结果表明:基于自适应滤波的无人机视觉导航误差补偿方法具备良好的图像去噪效果,可以精确校准无人机视觉导航误差且鲁棒性较强。 展开更多
关键词 自适应滤波 无人机 视觉导航 经验模态分解 本征模函数 最小熵自聚焦法
下载PDF
漏表面波IMF_(1)能量识别无砟轨道脱空适用性研究
14
作者 马嘉霈 袁笙哲 +3 位作者 肖军华 李航 潘越 苏志鹏 《振动.测试与诊断》 EI CSCD 北大核心 2023年第5期850-858,1033,1034,共11页
为了研究漏表面波法对高铁无砟轨道层间脱空检测的适用性,建立脱空特征指标,通过含层间脱空的板式无砟轨道实尺模型进行试验,建立空气‑无砟轨道耦合有限元模型,分析不同工况下的冲击响应声场分布特征;进一步对漏表面波信号进行希尔伯特... 为了研究漏表面波法对高铁无砟轨道层间脱空检测的适用性,建立脱空特征指标,通过含层间脱空的板式无砟轨道实尺模型进行试验,建立空气‑无砟轨道耦合有限元模型,分析不同工况下的冲击响应声场分布特征;进一步对漏表面波信号进行希尔伯特‑黄变换,保留高频特征信号至第1阶本征模函数(intrinsic mode function,简称IMF_(1)),分解低频干扰信号至高阶本征模函数,提出以IMF_(1)能量为特征指标的层间脱空判识方法。研究结果表明:随着脱空长度和脱空至荷载冲击点距离的增大,漏表面波IMF_(1)能量分布呈现正相关变化趋势;IMF_(1)能量对CRTSII型板式无砟轨道板中CA砂浆层脱空0.2~0.5 m较为敏感,基于漏表面波的CA砂浆层脱空检测具备一定理论可行性。 展开更多
关键词 板式无砟轨道 脱空识别 漏表面波 本征函数 第1阶本征模函数能量
下载PDF
采用滑动平均多元多尺度色散熵的液压泵故障诊断方法 被引量:1
15
作者 宫建成 韩涛 +2 位作者 杨小强 刘武强 周付明 《陆军工程大学学报》 2023年第1期45-54,共10页
为了提高色散熵的信息提取能力,在兼顾计算效率和效果的前提下,引入多维嵌入重构理论,借鉴滑动平均的思想,更新了传统多尺度算法的粗粒化方式,提出了滑动平均多元多尺度色散熵(moving average multivariate multiscale dispersion entro... 为了提高色散熵的信息提取能力,在兼顾计算效率和效果的前提下,引入多维嵌入重构理论,借鉴滑动平均的思想,更新了传统多尺度算法的粗粒化方式,提出了滑动平均多元多尺度色散熵(moving average multivariate multiscale dispersion entropy,MA_mvMDE)用以提取液压泵故障特征。首先,利用均匀相位经验模态分解(uniform phase empirical mode decomposition,UPEMD)将振动信号分解为多个本征模态分量(intrinsic mode functions,IMF),再采用相关系数法筛选敏感分量,将包含大量故障信息的模态分量作为多通道数据计算其MA_mvMDE值来提取故障特征。接着,采用MCFS方法选择故障敏感特征实现降维。最后,通过随机森林分类器完成故障识别。采用液压泵故障振动数据验证了该方法能够准确诊断不同类型和不同程度的故障。 展开更多
关键词 均匀相位经验模态分解 滑动平均多元多尺度色散熵 敏感IMF选择 故障诊断 液压泵
下载PDF
Intelligent Islanding Detection of Multi-distributed Generation Using Artificial Neural Network Based on Intrinsic Mode Function Feature 被引量:2
16
作者 Samuel Admasie Syed Basit Ali Bukhari +2 位作者 Teke Gush Raza Haider Chul Hwan Kim 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第3期511-520,共10页
The integration of distributed energy resources(DERs) into distribution networks is becoming increasingly important, as it supports the continued adoption of renewable power generation, combined heat and power plants,... The integration of distributed energy resources(DERs) into distribution networks is becoming increasingly important, as it supports the continued adoption of renewable power generation, combined heat and power plants, and storage systems. Nevertheless, inadvertent islanding operation is one of the major protection issues in distribution networks connected to DERs. This study proposes an intelligent islanding detection method(IIDM) using an intrinsic mode function(IMF)feature-based grey wolf optimized artificial neural network(GWO-ANN). In the proposed IIDM, the modal voltage signal is pre-processed by variational mode decomposition followed by Hilbert transform on each IMF to derive highly involved features. Then, the energy and standard deviation of IMFs are employed to train/test the GWO-ANN model for identifying the islanding operations from other non-islanding events. To evaluate the performance of the proposed IIDM, various islanding and non-islanding conditions such as faults, voltage sag, linear and nonlinear load and switching, are considered as the training and testing datasets. Moreover, the proposed IIDM is evaluated under noise conditions for the measured voltage signal. The simulation results demonstrate that the proposed IIDM is capable of differentiating between islanding and non-islanding events without any sensitivity under noise conditions in the test signal. 展开更多
关键词 Distributed energy resource(DER) intrinsic mode function(IMF) grey wolf optimized artificial neural network(GWO-ANN) intelligent islanding detection method(IIDM) MICROGRID
原文传递
基于EEMD能量熵和支持向量机的齿轮故障诊断方法 被引量:55
17
作者 张超 陈建军 郭迅 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期932-939,共8页
针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出基于总体平均经验模态分解(EEMD)和支持向量机的齿轮故障诊断方法。通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(IMF);齿轮... 针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出基于总体平均经验模态分解(EEMD)和支持向量机的齿轮故障诊断方法。通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(IMF);齿轮发生不同的故障时,在不同频带内的信号能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断齿轮的工作状态和故障类型。实验结果表明:文中提出的方法能有效地应用于齿轮的故障诊断。 展开更多
关键词 总体平均经验模态分解 本征模函数 能量熵 支持向量机 故障诊断
下载PDF
基于EMD能量熵和支持向量机的齿轮故障诊断方法 被引量:125
18
作者 张超 陈建军 郭迅 《振动与冲击》 EI CSCD 北大核心 2010年第10期216-220,共5页
针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出了基于经验模态分解(empirical mode decomposition,EMD)和支持向量机的齿轮故障诊断方法。首先通过EMD方法将非平稳的原始加速度振动信号分解成若干个平... 针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出了基于经验模态分解(empirical mode decomposition,EMD)和支持向量机的齿轮故障诊断方法。首先通过EMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(intrinsic mode function,IMF);齿轮发生不同的故障时,在不同频带内的信号能量值会发生改变,故可以通过计算不同振动信号的EMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机(support vector machine,SVM),判断齿轮的工作状态和故障类型。实验结果表明,该方法能有效地应用于齿轮的故障诊断。 展开更多
关键词 经验模态分解 本征模函数 能量熵 支持向量机 故障诊断
下载PDF
基于IMF能量谱的水声信号特征提取与分类 被引量:18
19
作者 刘深 张小蓟 +1 位作者 牛奕龙 汪平平 《计算机工程与应用》 CSCD 2014年第3期203-206,226,共5页
经验模态分解(EMD)是用来处理非平稳时变信号的一种信号分析方法,该方法对所分析信号的局部特征信号进行不同时间尺度的分解,从而得到这些局部特征信号的各阶本征模函数(IMF)。提出了一种基于IMF能量谱的水声信号特征提取与选择方法,通... 经验模态分解(EMD)是用来处理非平稳时变信号的一种信号分析方法,该方法对所分析信号的局部特征信号进行不同时间尺度的分解,从而得到这些局部特征信号的各阶本征模函数(IMF)。提出了一种基于IMF能量谱的水声信号特征提取与选择方法,通过对水声信号进行经验模态分解,提取信号的本征模式分量并转换为能量谱特征向量,从而观测不同信号子频带能量谱的特征变化。分类实验采用支持向量机(SVM)分类器进行。实验结果表明,相对于小波能量谱特征提取法而言,利用IMF能量谱作为特征向量的分类实验具有更佳的分类效果,平均正确率达88%以上。 展开更多
关键词 经验模态分解 本征模函数 本征模函数能量谱 特征提取 支持向量机(SVM)分类器
下载PDF
基于IMF能量矩和神经网络的轴承故障诊断 被引量:34
20
作者 秦太龙 杨勇 +1 位作者 程珩 薛松 《振动.测试与诊断》 EI CSCD 2008年第3期229-232,共4页
针对滚动轴承故障振动信号的非平稳特征,提出了一种本征模函数(Intrinsic Mode Function,简称IMF)能量矩的特征向量提取法,并与BP神经网络相结合用于滚动轴承的故障诊断。该方法首先利用经验模态分解(Empirical Mode Decomposition,简称... 针对滚动轴承故障振动信号的非平稳特征,提出了一种本征模函数(Intrinsic Mode Function,简称IMF)能量矩的特征向量提取法,并与BP神经网络相结合用于滚动轴承的故障诊断。该方法首先利用经验模态分解(Empirical Mode Decomposition,简称EMD)方法,把振动信号分解为若干个IMF,再将重要的IMF分量作基于时间轴的积分,得到IMF能量矩特征向量,最后借助BP神经网络的分类能力对特征向量进行分类。对滚动轴承的正常状态、外圈故障、滚动体故障和外圈故障信号的分析结果表明,该方法能够准确、有效地识别这些故障。 展开更多
关键词 滚动轴承 本征模函数 能量矩 故障诊断 经验模态分解 BP神经网络
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部