Under consideration is a nonclassical stationary problem on heat conduction in a body with the pre-set surface temperature and heat flow. The body contains inclusions at unknown locations and with unknown boundaries. ...Under consideration is a nonclassical stationary problem on heat conduction in a body with the pre-set surface temperature and heat flow. The body contains inclusions at unknown locations and with unknown boundaries. The body and inclusions have different constant thermal conductivities. The author explores the possibility of locating inclusions. The article presents an integral criterion based on which a few statements on identification of inclusions in a body are proved.展开更多
The decentralized fuzzy inference method(DFIM)is employed as an optimization technique to reconstruct time-and space-dependent heat flux of two-dimensional(2D)participating medium.The forward coupled radiative and con...The decentralized fuzzy inference method(DFIM)is employed as an optimization technique to reconstruct time-and space-dependent heat flux of two-dimensional(2D)participating medium.The forward coupled radiative and conductive heat transfer problem is solved by a combination of finite volume method and discrete ordinate method.The reconstruction task is formulated as an inverse problem,and the DFIM is used to reconstruct the unknown heat flux.No prior information on the heat flux distribution is required for the inverse analysis.All retrieval results illustrate that the time-and spacedependent heat flux of participating medium can be exactly recovered by the DFIM.The present method is proved to be more efficient and accurate than other optimization techniques.The effects of heat flux form,initial guess,medium property,and measurement error on reconstruction results are investigated.Simulated results indicate that the DFIM is robust to reconstruct different kinds of heat fluxes even with noisy data.展开更多
The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, whic...The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, which is a process to solve radiative inverse problem. In this paper, the flame of pulverized coal is considered as 3-D, absorbing, emitting, and anisotropically scattering non-gray medium. Through the study on inverse problem of radiative heat transfer, the temperature field in this kind of medium has been reconstructed. The mechanism of 3-D radiative heat transfer in a rectangular media, which is 2 m×3 m× 5 m and full of CO2, N2 and carbon particles, is studied with Monte Carlo method. The 3-D temperature field in this rectangular space is reconstructed and the influence of particles density profile is discussed.展开更多
文摘Under consideration is a nonclassical stationary problem on heat conduction in a body with the pre-set surface temperature and heat flow. The body contains inclusions at unknown locations and with unknown boundaries. The body and inclusions have different constant thermal conductivities. The author explores the possibility of locating inclusions. The article presents an integral criterion based on which a few statements on identification of inclusions in a body are proved.
基金Project supported by the Natural Science Foundation of Chongqing(CSTC,Grant No.2019JCYJ-MSXMX0441).
文摘The decentralized fuzzy inference method(DFIM)is employed as an optimization technique to reconstruct time-and space-dependent heat flux of two-dimensional(2D)participating medium.The forward coupled radiative and conductive heat transfer problem is solved by a combination of finite volume method and discrete ordinate method.The reconstruction task is formulated as an inverse problem,and the DFIM is used to reconstruct the unknown heat flux.No prior information on the heat flux distribution is required for the inverse analysis.All retrieval results illustrate that the time-and spacedependent heat flux of participating medium can be exactly recovered by the DFIM.The present method is proved to be more efficient and accurate than other optimization techniques.The effects of heat flux form,initial guess,medium property,and measurement error on reconstruction results are investigated.Simulated results indicate that the DFIM is robust to reconstruct different kinds of heat fluxes even with noisy data.
基金Project Supported by National Nature Science Foundation of China (50578034) Science and Technology Development Foundation ofDonghua University
文摘The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, which is a process to solve radiative inverse problem. In this paper, the flame of pulverized coal is considered as 3-D, absorbing, emitting, and anisotropically scattering non-gray medium. Through the study on inverse problem of radiative heat transfer, the temperature field in this kind of medium has been reconstructed. The mechanism of 3-D radiative heat transfer in a rectangular media, which is 2 m×3 m× 5 m and full of CO2, N2 and carbon particles, is studied with Monte Carlo method. The 3-D temperature field in this rectangular space is reconstructed and the influence of particles density profile is discussed.