This paper introduces a three-step iteration for finding a common element of the set of fixedpoints of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly monotone map...This paper introduces a three-step iteration for finding a common element of the set of fixedpoints of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly monotone mapping by viscosity approximation methods in a Hilbert space.The authors showthat the iterative sequence converges strongly to a common element of the two sets,which solves somevariational inequality.Subsequently,the authors consider the problem of finding a common fixed pointof a nonexpansive mapping and a strictly pseudo-contractive mapping and the problem of finding acommon element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping.The results obtained in this paper extend and improve the correspondingresults announced by Nakajo,Takahashi,and Toyoda.展开更多
In this paper,we consider an iterative sequence for generalized equilibrium problems and strictly pseudocontractive mappings.We show that the iterative sequence converges strongly to a common element of the solution s...In this paper,we consider an iterative sequence for generalized equilibrium problems and strictly pseudocontractive mappings.We show that the iterative sequence converges strongly to a common element of the solution set of generalized equilibrium problems and of the fixed point set of strictly pseudocontractive mappings.展开更多
In this paper, a convex feasibility problem is considered. We construct an iterative method to approximate a common element of the solution set of classical variational inequalities and of the fixed point set of a str...In this paper, a convex feasibility problem is considered. We construct an iterative method to approximate a common element of the solution set of classical variational inequalities and of the fixed point set of a strict pseudocontraction. Strong convergence theorems for the common element are established in the framework of Hilbert spaces.展开更多
The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating ...The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.展开更多
In this paper, we introduce an iterative scheme for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inclusion for an inverse-strongly monotone ...In this paper, we introduce an iterative scheme for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inclusion for an inverse-strongly monotone mapping and a maximal monotone mapping in a real Hilbert space. Then we show that the sequence converges strongly to a common element of two sets. Using the result, we consider the problem of finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert space.展开更多
In this papers weak and strong convergence theorems are established by hybrid iteration method for generalized equilibrium problem and fixed point problems of a finite family of asymptotically nonexpansive mappings in...In this papers weak and strong convergence theorems are established by hybrid iteration method for generalized equilibrium problem and fixed point problems of a finite family of asymptotically nonexpansive mappings in Hilbert spaces. The results presented in this paper partly extend and improve the corresponding results of the previous papers.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 10771050
文摘This paper introduces a three-step iteration for finding a common element of the set of fixedpoints of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly monotone mapping by viscosity approximation methods in a Hilbert space.The authors showthat the iterative sequence converges strongly to a common element of the two sets,which solves somevariational inequality.Subsequently,the authors consider the problem of finding a common fixed pointof a nonexpansive mapping and a strictly pseudo-contractive mapping and the problem of finding acommon element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping.The results obtained in this paper extend and improve the correspondingresults announced by Nakajo,Takahashi,and Toyoda.
基金supported by National Research Foundation of Korea Grantfunded by the Korean Government (2009-0076898)
文摘In this paper,we consider an iterative sequence for generalized equilibrium problems and strictly pseudocontractive mappings.We show that the iterative sequence converges strongly to a common element of the solution set of generalized equilibrium problems and of the fixed point set of strictly pseudocontractive mappings.
文摘In this paper, a convex feasibility problem is considered. We construct an iterative method to approximate a common element of the solution set of classical variational inequalities and of the fixed point set of a strict pseudocontraction. Strong convergence theorems for the common element are established in the framework of Hilbert spaces.
基金supported by the Natural Science Foundation of Yibin University (No.2009-Z003)
文摘The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.
文摘In this paper, we introduce an iterative scheme for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inclusion for an inverse-strongly monotone mapping and a maximal monotone mapping in a real Hilbert space. Then we show that the sequence converges strongly to a common element of two sets. Using the result, we consider the problem of finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert space.
基金supported by the Natural Science Foundation of Fujian Province(No.2014J01008)Young and Middle-aged Teachers Education Scientific Research Project of Fujian Province(No.JA15624)
文摘In this papers weak and strong convergence theorems are established by hybrid iteration method for generalized equilibrium problem and fixed point problems of a finite family of asymptotically nonexpansive mappings in Hilbert spaces. The results presented in this paper partly extend and improve the corresponding results of the previous papers.