Objective:To study the clinical effect of Carisolv minimally invasive gel in the treatment of pediatric dental caries and its effect on pain.Methods:The research subjects of this paper were 113 cases of pediatric cari...Objective:To study the clinical effect of Carisolv minimally invasive gel in the treatment of pediatric dental caries and its effect on pain.Methods:The research subjects of this paper were 113 cases of pediatric caries admitted to the hospital from April 2021 to April 2023,which were divided into two groups by the randomized table method.The control group(n=56)received the traditional dental drilling treatment method,and the observation group(n=57)applied Carisolv minimally invasive gel for treatment.The pain sensitivity and clinical efficacy as well as the emotions and adherence of the children were compared between the two groups.Results:The emotional score(ES)of children in the observation group was significantly lower than that of the control group,and the Frankl Adherence Scale score was significantly higher than that of the control group,P<0.05;the pain sensitivity of children in the observation group was better than that of the control group,and the total clinical efficacy rate of children in the observation group was significantly higher than that of the control group,P<0.05.Conclusion:Carisolv minimally invasive gel has considerable efficacy in the treatment of pediatric caries,and it can alleviate pain and improve children’s emotional state and adherence to the program.Thus,it is suitable for wide clinical applications.展开更多
Nano-sized trinitrotoluene(TNT) material restrained in silica gel has been prepared by using the sol-gel process to study the effect of varying porosity in gel on the sensitivity of TNT. The TNT content in the gel has...Nano-sized trinitrotoluene(TNT) material restrained in silica gel has been prepared by using the sol-gel process to study the effect of varying porosity in gel on the sensitivity of TNT. The TNT content in the gel has been varied from 60 to 90 wt %(at fixed acetone/tetramethoxysilane ratio of 50). Also, for a fixed TNT content of 75 wt %, the pore structure in the gel has been varied by changing the ratio of silica gel precursor to the solvent. The resultant TNT–silica gel composites have been characterized using scanning electron microscopy, thermal analysis, small angle X-ray scattering and surface area analysis techniques. Impact sensitivity studies were carried out using Fall Hammer Impact Test. The results showed that the sensitivity of nanostructured explosives prepared by sol-gel process can be tailored precisely by controlling the process parameters.展开更多
Nanometer sized SnO 2 particles were prepared by a sol gel method using inorganic salt as a precursor material. Its crystallization was investigated by means of TG DTA,IR absorption spectra, X ray diffractometry ...Nanometer sized SnO 2 particles were prepared by a sol gel method using inorganic salt as a precursor material. Its crystallization was investigated by means of TG DTA,IR absorption spectra, X ray diffractometry and TEM as well as its resistivity change and the gas sensitivity varied with temperature were measured in various reducing gas. The results indicate that well crystallized nano sized SnO 2 with size around 15nm can be obtained at annealing temperature 600℃. The activation energy for the growth of nano SnO 2 was calculated to be 26.55kJ.mol 1 when the annealing temperature was higher than 500℃. The measurements also show that there is a peculiar resistance change varied with temperature for nano SnO 2.It has relevance to the increase in surface adsorbed oxygen. The selective detectivities to C 4H 10 and petrol can be increased when ruthenium ion was doped in nano SnO 2 as a catalyst and so do the gas sensitivity to CO,CH 4,H 2 etc. when rhodium ion was doped in.The detection to the several reducing gas can be realized when the temperature ranged from 260℃ to 400℃.展开更多
We fabricated dye-sensitized solar cells with non-cross-linked fluorinated gel electrolyte. The application of fluorinated gel to electrolyte is a challenging issue at present. The gelation of the electrolyte is of im...We fabricated dye-sensitized solar cells with non-cross-linked fluorinated gel electrolyte. The application of fluorinated gel to electrolyte is a challenging issue at present. The gelation of the electrolyte is of importance in order to solve the problem in the durability of the cell. We investigated, in this article, the effect of Pt deposition on the anode of the cell. The Pt was deposited by means of a DC sputtering technique. The studies showed that the deposition time strongly affected both open voltage and short-circuit current of the cell. The adaptive thickness of the Pt layer was determined to be 10 nm for the non-cross-linked fluorinated gel electrolyte cells.展开更多
To pursue electron-generation stability with no sacrifice of photovoltaic performance has been a persistent objective for all kinds of solar cells. Here, we demonstrate the experimental realization of this objective b...To pursue electron-generation stability with no sacrifice of photovoltaic performance has been a persistent objective for all kinds of solar cells. Here, we demonstrate the experimental realization of this objective by quasi-solid-state quantum dot-sensitized solar cells from a series of conducting gel electrolytes composed of polyacrylamide(PAAm) matrix and conductive polymers [polyaniline(PANi), polypyrrole(PPy) or polythiophene(PT)]. The reduction of Sx2- occurred in both interface and three dimensional framework of conducting gel electrolyte as a result of the electrical conduction of PANi, PPy and PT toward refluxed electrons from external circuit to Pt electrode. The resulting solar cells can yield the solarto-electrical conversion efficiency of 2.33%, 2.25% and 1.80% for PANi, PPy and PT based gel electrolytes,respectively. Those solar cells possessed much higher efficiency than that of 1.74% based on pure PAAm gel electrolyte owing to the enhanced kinetics for Sx2- ? S2- conversion. More importantly, the stability of quasi-solid-state solar cell is significantly advanced, arising from the localization of liquid electrolyte into the three dimensional framework and therefore reduced leakage and volatilization.展开更多
We fabricated dye-sensitized solar cells including fluorinated gel electrolyte and studied about the relationship between the performance of the solar cells and the aggregation state of TiO2 nano-particles on electrod...We fabricated dye-sensitized solar cells including fluorinated gel electrolyte and studied about the relationship between the performance of the solar cells and the aggregation state of TiO2 nano-particles on electrodes. As for the performance of the cell, the I-V characteristics were measured under irradiation. The combination of TiO2 nanoparticles with different size plays an important role in bringing unevenness to realize a large surface area, which is critical for the high performance of the cells.展开更多
Fluorinated oligomer gel is suitable to the electrolyte of dye sensitized solar cell. This article studied mainly in the scope of electric conductivity, including ionic liquid in the electrolyte. It was found that the...Fluorinated oligomer gel is suitable to the electrolyte of dye sensitized solar cell. This article studied mainly in the scope of electric conductivity, including ionic liquid in the electrolyte. It was found that the ratio of mixing with dimetyl sulfoxide and the concentration of LiI affect the conductivity. The behavior is different depending on the type of ionic liquid. Although the mixing ionic liquid enhances the conductivity, the short circuit current density of assembled solar cell with it was suppressed so much.展开更多
Fluorinated oligomer gel is suitable to the electrolyte of dye-sensitized solar cell for low cost production. In this article, addition of pyridine was investigated for the purpose of enhancing the short current densi...Fluorinated oligomer gel is suitable to the electrolyte of dye-sensitized solar cell for low cost production. In this article, addition of pyridine was investigated for the purpose of enhancing the short current density. Two kinds of ionic liquids were tested: imidazolium and pyrazolium systems. The two different stages of adding pyridine to the electrolyte were considered and the amount of pyridine was studied. It was found that the electrolyte including pyrazolium ionic liquids to which pyridine was added before the mixing with fluorinated oligomer showed the highest electric conductivity, short current density and open voltage. This resulted in the highest conversion efficiency of 4%. As the amount of pyridine increased, the fill factor and the open voltage were improved at first, and then the short current density increased. If the pyridine was added more, the short current density conversely decreased.展开更多
文摘Objective:To study the clinical effect of Carisolv minimally invasive gel in the treatment of pediatric dental caries and its effect on pain.Methods:The research subjects of this paper were 113 cases of pediatric caries admitted to the hospital from April 2021 to April 2023,which were divided into two groups by the randomized table method.The control group(n=56)received the traditional dental drilling treatment method,and the observation group(n=57)applied Carisolv minimally invasive gel for treatment.The pain sensitivity and clinical efficacy as well as the emotions and adherence of the children were compared between the two groups.Results:The emotional score(ES)of children in the observation group was significantly lower than that of the control group,and the Frankl Adherence Scale score was significantly higher than that of the control group,P<0.05;the pain sensitivity of children in the observation group was better than that of the control group,and the total clinical efficacy rate of children in the observation group was significantly higher than that of the control group,P<0.05.Conclusion:Carisolv minimally invasive gel has considerable efficacy in the treatment of pediatric caries,and it can alleviate pain and improve children’s emotional state and adherence to the program.Thus,it is suitable for wide clinical applications.
文摘Nano-sized trinitrotoluene(TNT) material restrained in silica gel has been prepared by using the sol-gel process to study the effect of varying porosity in gel on the sensitivity of TNT. The TNT content in the gel has been varied from 60 to 90 wt %(at fixed acetone/tetramethoxysilane ratio of 50). Also, for a fixed TNT content of 75 wt %, the pore structure in the gel has been varied by changing the ratio of silica gel precursor to the solvent. The resultant TNT–silica gel composites have been characterized using scanning electron microscopy, thermal analysis, small angle X-ray scattering and surface area analysis techniques. Impact sensitivity studies were carried out using Fall Hammer Impact Test. The results showed that the sensitivity of nanostructured explosives prepared by sol-gel process can be tailored precisely by controlling the process parameters.
文摘Nanometer sized SnO 2 particles were prepared by a sol gel method using inorganic salt as a precursor material. Its crystallization was investigated by means of TG DTA,IR absorption spectra, X ray diffractometry and TEM as well as its resistivity change and the gas sensitivity varied with temperature were measured in various reducing gas. The results indicate that well crystallized nano sized SnO 2 with size around 15nm can be obtained at annealing temperature 600℃. The activation energy for the growth of nano SnO 2 was calculated to be 26.55kJ.mol 1 when the annealing temperature was higher than 500℃. The measurements also show that there is a peculiar resistance change varied with temperature for nano SnO 2.It has relevance to the increase in surface adsorbed oxygen. The selective detectivities to C 4H 10 and petrol can be increased when ruthenium ion was doped in nano SnO 2 as a catalyst and so do the gas sensitivity to CO,CH 4,H 2 etc. when rhodium ion was doped in.The detection to the several reducing gas can be realized when the temperature ranged from 260℃ to 400℃.
文摘We fabricated dye-sensitized solar cells with non-cross-linked fluorinated gel electrolyte. The application of fluorinated gel to electrolyte is a challenging issue at present. The gelation of the electrolyte is of importance in order to solve the problem in the durability of the cell. We investigated, in this article, the effect of Pt deposition on the anode of the cell. The Pt was deposited by means of a DC sputtering technique. The studies showed that the deposition time strongly affected both open voltage and short-circuit current of the cell. The adaptive thickness of the Pt layer was determined to be 10 nm for the non-cross-linked fluorinated gel electrolyte cells.
基金financial supports from the National Natural Science Foundation of China (21503202, 61604143 and 61774139)Yunnan Provincial Natural Science Foundation (Grant No. 2017FA024)
文摘To pursue electron-generation stability with no sacrifice of photovoltaic performance has been a persistent objective for all kinds of solar cells. Here, we demonstrate the experimental realization of this objective by quasi-solid-state quantum dot-sensitized solar cells from a series of conducting gel electrolytes composed of polyacrylamide(PAAm) matrix and conductive polymers [polyaniline(PANi), polypyrrole(PPy) or polythiophene(PT)]. The reduction of Sx2- occurred in both interface and three dimensional framework of conducting gel electrolyte as a result of the electrical conduction of PANi, PPy and PT toward refluxed electrons from external circuit to Pt electrode. The resulting solar cells can yield the solarto-electrical conversion efficiency of 2.33%, 2.25% and 1.80% for PANi, PPy and PT based gel electrolytes,respectively. Those solar cells possessed much higher efficiency than that of 1.74% based on pure PAAm gel electrolyte owing to the enhanced kinetics for Sx2- ? S2- conversion. More importantly, the stability of quasi-solid-state solar cell is significantly advanced, arising from the localization of liquid electrolyte into the three dimensional framework and therefore reduced leakage and volatilization.
文摘We fabricated dye-sensitized solar cells including fluorinated gel electrolyte and studied about the relationship between the performance of the solar cells and the aggregation state of TiO2 nano-particles on electrodes. As for the performance of the cell, the I-V characteristics were measured under irradiation. The combination of TiO2 nanoparticles with different size plays an important role in bringing unevenness to realize a large surface area, which is critical for the high performance of the cells.
文摘Fluorinated oligomer gel is suitable to the electrolyte of dye sensitized solar cell. This article studied mainly in the scope of electric conductivity, including ionic liquid in the electrolyte. It was found that the ratio of mixing with dimetyl sulfoxide and the concentration of LiI affect the conductivity. The behavior is different depending on the type of ionic liquid. Although the mixing ionic liquid enhances the conductivity, the short circuit current density of assembled solar cell with it was suppressed so much.
文摘Fluorinated oligomer gel is suitable to the electrolyte of dye-sensitized solar cell for low cost production. In this article, addition of pyridine was investigated for the purpose of enhancing the short current density. Two kinds of ionic liquids were tested: imidazolium and pyrazolium systems. The two different stages of adding pyridine to the electrolyte were considered and the amount of pyridine was studied. It was found that the electrolyte including pyrazolium ionic liquids to which pyridine was added before the mixing with fluorinated oligomer showed the highest electric conductivity, short current density and open voltage. This resulted in the highest conversion efficiency of 4%. As the amount of pyridine increased, the fill factor and the open voltage were improved at first, and then the short current density increased. If the pyridine was added more, the short current density conversely decreased.