We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The ...We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.展开更多
The impacts of ionospheric scintillation on geosynchronous synthetic aperture radar(GEO SAR)focusing is studied based on the multiple phase screen(MPS)theory.The power spectrum density of electron irregularities i...The impacts of ionospheric scintillation on geosynchronous synthetic aperture radar(GEO SAR)focusing is studied based on the multiple phase screen(MPS)theory.The power spectrum density of electron irregularities is first modified according to the ionospheric anisotropy.Then propagation wave equations in random medium are deduced in the case of oblique incidence in GEO SAR.The amplitude and phase errors induced by the random electron fluctuations are generated by the iterated MPS simulations and are superimposed into the GEO SAR signals.Through the following imaging and evaluation,the effects of the anisotropic ionospheric scintallition on GEO SAR are assessed.At last,the optimized integration time under different ionospheric scintillation conditions are recommended through Monte Carlo experiments.It is concluded that,greater ionospheric fluctuations and longer integration time will result in more severe deterioration,even no focus at all in the worst case.展开更多
文摘We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.
基金Supported by the National Natural Science Foundation of China(61225005,61427802,61471038,61120106004)Chang Jiang Scholars Program(T2012122)+1 种基金111 project of China(B14010)Beijing Higher Education Young Elite Teacher Project(YETP1168)
文摘The impacts of ionospheric scintillation on geosynchronous synthetic aperture radar(GEO SAR)focusing is studied based on the multiple phase screen(MPS)theory.The power spectrum density of electron irregularities is first modified according to the ionospheric anisotropy.Then propagation wave equations in random medium are deduced in the case of oblique incidence in GEO SAR.The amplitude and phase errors induced by the random electron fluctuations are generated by the iterated MPS simulations and are superimposed into the GEO SAR signals.Through the following imaging and evaluation,the effects of the anisotropic ionospheric scintallition on GEO SAR are assessed.At last,the optimized integration time under different ionospheric scintillation conditions are recommended through Monte Carlo experiments.It is concluded that,greater ionospheric fluctuations and longer integration time will result in more severe deterioration,even no focus at all in the worst case.